UEGYETEM 1782

Budapest University of Technology and Economics

Department of Broadband Infocommunications and Electromagnetic Theory

Andras Retzler

Software Defined Radio Receiver Application
with Web-based Interface

BSc Thesis

Thesis supervisors:

Péter Horvath, PhD

Associate Professor

Péter Bakki

Assistant Lecturer

Contents

1 ADSITACE. ettt ettt et b et b et et a e et st b e bbb sae e e b e e e nee e 5
2 OSSZEIOGLALO.......ceeevveveeeeeieeeteteeeee ettt ettt et ettt as st ettt ete s eneetenserenseneene 6
3 Introduction to OPENWEDRX.......ccccutiiiiiiiiiieniteeiteeree ettt sre e sre e sareesee e e e s ssnanes 7
3.1 SOFtWAIE TEIEASE.cveeeeeiieeeieteeteete ettt ettt ettt et e e sbe et e st e sseesneesnaee 9
3.2 BaSIC fRAIUTES.coveiviriiieiieieeiereet ettt sttt st r e e ne e 10
4 Fundamentals of Software Defined Radio..........cccceeueevierienienniinieninienecseneceeceen 14
4.1 Introduction and hiStOTY.......coecueirrieiiiieiiiiecriteeie et rre s sr e e e e seae e e e s eees 14
4.2 Advantages and diSadVantages..........cceeeeveeerueerriueeeniieeriieeeseeeesseesseeessseesssseesenns 14
4.3 Software Defined Radio architectures.............ccoceeevuerrieriieenieniiennieeeeiiee e 17
4.4 The challenge of dynamicC range..........ccocceeeueerieriiernienrieenieeie e ereeesrreeeereee e 19
4.5 Universal SDR hardware.............coooeiiiiiiiinienieeeeeteee e 20
4.6 RTL-SDR...cniiiiiiteieeteet ettt ettt sttt sttt st e st et et s e sbeebesateesteeseesaneas 21
5 SYSTEIM QSIS .eiiueieiiieiieeieeite et et ettt et e st e et e et e st e e bt e sabe e bt e saseessaesabeeesnnseeesnnes 24
5.1 Analysis of similar SOftWare.........cccuevvuiirieiiiiieeeeeeeee e 24
5.2 Planning the SIIUCIUTE.......c.ueieiuierriiierrieeerieeesteeesreeesteessaeessareeesssnnsneeesssssssseeeens 26
6 The Server aPPLICAtION.cccuiiecieerciieeeieeeetee et e e et eesee e s aeesseaeesaaeessaeessseeensaaenas 28
7 The client front-eNd.........cooeeiiririeriieeieeeeeeeeece ettt 34
7.1 JavaScript, the heart of the front-end.........c...cooceeriiiiniiniiinieeee e, 35
8 Digital signal processing in OpenWebRX..........coocviiiriiieiiiiiiiniiieiieenieeeeeesireee e 38
8.1 SyStem arChit@CIUTE.cccuveieeieeeeiieeeiee et et et eeee e e e e e e e s e e s aeeesaaaeeeesaenes 38
8.2 Software design for performance..............cocueeeeveriieniininieniceeeeeeee e 40
8.3 ChoiCe Of data tyPeS.....ceevireiieeiieiienieeriteete ettt et ste et stessteesateesaeesasessneeennns 42
8.4 Function and parameter Nnaming CONVENIONS.ccccueerrveerrveerieeessssnvreeeessssneeees 43
8.5 Testing and evaluation..........ccecuieeeriieieiieeeieeeriee e erte e cee e e e e e s aaaeee e e e eaaees 44
9 Channelization and filters..........cceevuiirieriiiirieeieeeeeete ettt 46
9.1 Frequency tranSlation............ceecveerieeiiienienieenieesieestessieesteesaeesnessaeessteesseessnsaesas 46
9.2 FAlter d@SIN...ccieurieieiieiiieeiieeeite ettt e te e e ste e s ste e s saaeesabbaeeeessssnaaaeessnnnnnes 49
9.3 RESAIMPIINE....ccceuiiiiiiieiiiieeieeecte ettt ettt e e te e e ae e e seaeessbbaeeeesssnasaaeeesnnnsnens 54
9.4 Band-pass filter Using FET.......ccccuiiiiiriiiieieeteteeeeteee ettt 59
10 DemOAUIAtION. ...c..eiruiiteeieeiieieeertee ettt ettt ettt st e e e e es 60
10.1 Amplitude modulated Signals.........cccceerrvieerriiiriiiienieeeree e 61

10.2 AM demodulation teChNIQUES..........ccceeiiriiirrieriiieieeieeree et ee e 62

10.3 DC DIOCKING FIltOT....ccuviiiieeiieiieeieesteeeete ettt et ve e e e iae e e eeaae s 63
10.4 Single-sideband signals (SSB)......c.uiieiuiiiiiiiiiiiieeciteeiee e 67
10.5 Frequency modulated Signals..........ccccceveerierieriieniinenieneeenieseeeeeeeeie e 70
10.6 DE-EIMPRASIS. .. .veiviirieiiieeieeeeeieeree et esteete et esteeseaesbeesatesbeesseesssaesasessseenssees 72
11 Other DSP fUNCHONS.cocuerierierieeteeeeeteeete ettt sttt e e s 75
11.1 Automatic ain CONMLTOL.....ccccueeiiiieeiieeeiieeecte e e e e e sreeereeeieeesaeeesaeeessaaeenannaeeas 75
11.2 Fast Fourier Transform..........ccceecuiirieiiiinieeiteieeicetee ettt 77
12 Conclusion and potential further improvements.............ccceeeervieerrreeenineeensneeensnnenn 80
13 BiblIOGIaPNY .. .uviiiiiiiiieiiie ettt e st e e e e e s e araaeas 81
BN 0] 0 1<) 1 La I PSR SRRRPSRRRPPRRNt 84

HALLGATOI NYILATKOZAT

Alulirott Retzler Andras, szigorld hallgato kijelentem, hogy ezt a szakdolgozatot meg
nem engedett segitség nélkiil, sajat magam készitettem, csak a megadott forrasokat
(szakirodalom, eszk6zok stb.) hasznaltam fel. Minden olyan részt, melyet sz6 szerint,
vagy azonos értelemben, de atfogalmazva mas forrasbol atvettem, egyértelmiien, a

forras megadasaval megjeloltem.

Hozzajarulok, hogy a jelen munkam alapadatait (szerz6, cim, angol és magyar nyelvii
tartalmi kivonat, készités éve, konzulens neve) a BME VIK nyilvanosan hozzaférhetd
elektronikus formaban, a munka teljes szdvegét pedig az egyetem belsé hal6zatan
keresztiil (vagy hitelesitett felhasznadlék szdmara) kozzétegye. Kijelentem, hogy a
benytjtott munka és annak elektronikus verzioja megegyezik. Dékani engedéllyel
titkositott diplomatervek esetén a dolgozat szévege csak 3 év eltelte utan valik

hozzaférhet6vé.
Kelt: Budapest, 2014. 12. 19.

Retzler Andras

1 Abstract

Software Defined Radio (SDR) has recently became a popular technology in the
telecommunications industry. Its many advantages, including flexibility,
reconfigurability and reliability, approve its wide use in radio frequency (RF)
communication devices of today and tomorrow. As more and more integrated radio
solutions became available, cheap universal SDR devices have appeared with wide

tuning range and high sampling rates.

In this thesis, design and implementation of an SDR receiver application, OpenWebRX

is presented. OpenWebRX has the following features:

- It can be used as a communication receiver for analog modulations

(AM/FM/SSB).
- It can use USB dongles based on RTL2832U IC as input RF front-end.

- It allows multiple users to connect via a web interface, on which it displays a

real-time waterfall display.

- It allows users to select different channels within the bandwidth of the sampled
signal acquired from the RF front-end. The selected channel is demodulated and
the resulting audio is streamed to the browser of the user, where it is played back
on the sound card. Users can set receiver parameters (channel frequency,

modulation mode, filter envelope) independently.

- The web interface supports multiple browsers and uses modern browser features

introduced in HTML5.

The digital signal processing (DSP) functions were placed in a separate library, libcsdr.
It contains functions for digital downconversion, filtering and demodulation of

AM/FM/SSB signals.

The purpose of the software is to enable amateur radio operators to set up receiver
stations that are remotely accessible through the Internet. Both OpenWebRX and libcsdr

are released under open-source licenses to let others modify, improve or support it later.

By the time of finishing this thesis, OpenWebRX is already being tested in real-world

use by several amateur radio operators.

2 Osszefoglal6

A Software Defined Radio (SDR) mara a telekommunikacids iparag kedvelt
technologiajava valt. Az olyan el6nyei, mint a rugalmassag, az tjrakonfiguralhat6sag és
a megbizhatdsag jogossa teszik a hasznalatat a jelen és jovo radidfrekvencids (RF)
kommunikacios eszkozeiben. Egyre tobb integralt RF megoldas jelenik meg a piacon,
koztiik olcso, univerzalis SDR hardverek is, amelyek széles savban hangolhaték és

gyors mintavételt tesznek lehet6vé.

Dolgozatomban egy SDR vevd alkalmazas tervezésérol és megvaldsitasarol irok. Az

alkalmazast OpenWebRX-nek neveztem el. Az alabbi funkciokkal rendelkezik:

- Ugy hasznalhat6, mint egy analég modulaciés médokat (AM/FM/SSB) célzé

kommunikacios vevo.
- RTL2832U alapt USB eszkozoket tud kezelni jelforrasként.

- Webes feliiletére tobb felhasznald is csatlakozhat, és valds idOben frissitett

vizesés-diagramon tekintheti meg a vételi sav viszonyait.

- A felhaszndlé kivalaszthat egy csatornat, amit a kiszolgdl6 demodulél és a
bongészébe hang adatfolyamként tovabbit, ahol lejatszasra keriil a hangkartyan.
A felhasznalok egymastol fiiggetleniil éllithatjdk a vevd paramétereit (a csatorna

frekvenciajat, a modulaciot és a szlir karakterisztikat is).

- A webes feliilet tobb bongész6 szoftvert is tamogat, és olyan funkcidkat is

hasznal, amik a HTMLS5 tjdonsagaiként jelentek meg.

A digitalis jelfeldolgozas (DSP) egy kiilon fiiggvénykonyvtarba, a libcsdr-be kertiilt. Ez
tartalmazza a digitalis lekeveréshez, a sziliréshez és az AM/FM/SSB demoduléaciohoz

sziikséges fliggvényeket.

A szoftver célja, hogy a radidamatérok olyan vevOallomasokat allithassanak fel,
amelyek az interneten keresztiil is elérhetok. Mind az OpenWebRX, mind a libcsdr nyilt
forraskodu licensszekkel van kozzétéve, amely lehet6vé teszi masok szamadara a kod
késébbi modositasat, javitasat és tamogatasat.

A dolgozat befejezésekor az OpenWebRX-et mar tobb radidamator is teszteli valo

életbeli alkalmazasban.

3 Introduction to OpenWebRX

With the increasing number of integrated radio solutions becoming available, System on
a chip (SoC) designs for radio frequency (RF) applications have gained popularity in the
industry. On the other hand, the computational speed we can achieve with general
purpose CPUs, application-specific integrated circuits (ASIC) or field-programmable
gate array (FPGA) chips is also increasing. It also implies that building RF receivers
and transmitters with digital signal processing (DSP) techniques, which is also referred
as Software Defined Radio (SDR), has become a rational choice. SDR has a wide range

of uses today:

- it is used in various telecommunications equipment: DVB receivers, mobile base

stations, military and aerospace targeted devices, etc.
- it is used by R&D companies for prototyping and measurement of RF devices,
- itis used by amateur radio operators and hobbyists.

Its use in amateur radio is a logical choice as this activity involves experimenting with
technology, and there are a lot of different modulations used by amateur radio operators
for making contacts with each other over the radio. SDR makes it easy to implement

both modulators and demodulators.

Several desktop SDR receiver applications exist for receiving analog communication
modes (Gqrx, SDR#, HDSDR, PowerSDR, QtRadio, etc.), and there are also some for
mobile devices running Android (SDR Touch, gISDR). Very few SDR software provide
a web-based interface (notable examples are WebSDR and ShinySDR), which can be

used for simple remote access of the receiver.

The software covered by this thesis was designed in the hope to give something useful
to the amateur radio community. The goal was to implement an SDR receiver software
with a web interface, which is fully open-source (released under GPL license, and most
of the DSP code under the even more permissive BSD license). It can serve multiple
users at once, demodulating an AM/FM/SSB/CW transmission of their choice from a
signal acquired by a sufficient SDR hardware with a ‘digital IF’ architecture (detailed
later).

On the client side, it requires only an up-to-date web browser (Google Chrome or

Mozilla Firefox) to access the server. It presents the RF spectrum visually on a
spectrogram (also referenced as ‘waterfall display’ in the thesis), where the signal to be
received can be selected. The web front-end uses modern browser features introduced in
HTMLS5: these include the <canvas> element, Web Audio API and WebSocket. The

operation of the software can be represented with the simple block diagram shown in

Figure 1.

dio st .
gaco o >HQ Client web browser

spectrum display
> ﬁ;] Client web browser

> ﬁ;] Client web browser
Figure 1: Block diagram of web-based SDR software

raw 1/Q data

SCIVE]

software

In the following part of the introduction, I explain the availability and the usage of the
software. In chapter 4, I comment on SDR in general. In chapters 5 to 7, I write about
the system design and the underlying architecture of the server software and the front-
end. In chapters 8 to 11, I explain the digital signal processing (DSP) functions used by

the server. In chapter 12, I write about the lessons drawn during the project.

3.1 Software release

The software was named OpenWebRX, and it can be downloaded from GitHub (a
website dedicated to hosting the source code of open-source software projects) by

visiting the following URL:

https://github.com/simonyiszk/openwebrx

- OpenWebRX | Open Source Web-based SDR for everyone! - Chromium T
' il OpenWebRX | Open 4 x § ¥ X

& - C [localhost:8073 | =

@mﬁ !@40)J' ;32&(2;’)) ﬂl [Bﬁ:;as:sgt?aungary | Loc: JNSTML, ASL: 182 m, [maps]
JETR,

1 1 1 1
145.45 MHz

openwebrx.js (beta) client log

Author: . Please send me bug reports and suggestions.

Client status: audio recv. at 57344 sps (44206.8 sps avg.), feed at 44156.9 sps output

Your client ID is: Oedd1efca5d81d879ff4cd65b9¢49082

WebSocket opened to ws://localhost:8073/ws/ 145.526,2 MHz
Acknowledged WebSocket connection: CLIENT DE SERVER openwebrx.py 145

Web Audio API succesfully initialized, sample rate: 44100 sps

FM AM LSB USB CW

Figure 2: Screenshot of OpenWebRX running locally, with the default settings
The DSP library written for OpenWebRX has been released as a separate project:

https://github.com/simonyiszk/csdr

The DSP library was tested with the help of GNU Radio Companion, and some special
GNU Radio blocks were made for this purpose. I also considered these reusable, and

made them available under a different repository:

https://github.com/simonyiszk/gr-haSkfu

The build and usage information is available on the GitHub project pages. Information

regarding the exact git revisions this thesis refers to, is available in the Appendix.

https://github.com/simonyiszk/gr-ha5kfu
https://github.com/simonyiszk/csdr
https://github.com/simonyiszk/openwebrx

3.2 Basic features

When an OpenWebRX server has been set up and started, the users can access it by
typing the appropriate hostname and port to the address bar of the web browser (as seen
in Figure 2). With the default settings, an OpenWebRX server that runs on the local
machine can be accessed at the following URL: http://localhost:8073/

When a user loads the page, he is presented with a waterfall display and the audio

stream starts immediately. Figure 3 shows the separate parts of the page:

Receiver summary

Receiver information
(or chatbox)

Frequency scale
and filter envelope

Frequency display,
modulation settings

Log and client
status information

Waterfall display
Figure 3: Parts of the OpenWebRX GUI

The top of the page contains customized information about the receiver (amateur radio
call sign and e-mail address of operator, location, height above sea level). It also
contains a picture taken from the receiver site (it is intended to be replaced by image
automatically taken from a web camera in later versions). There is also support for
including a chat box in the top of the page (via service provided on http://tlk.io), which

allows users to discuss about the signals received.

10

http://tlk.io/
http://localhost:8073/

Frequency can be changed by clicking on the scale or the waterfall display. The
beginning and the ending of the filter envelope can be moved in order to change the

digital IF filter bandwidth (as in Figure 4).

Figure 4: Filter envelope before and after user
has changed the filter bandwidth

By holding down the shift key, the entire passband can be moved (imitating the
Passband Shift or PBS knob on traditional receivers), or the local oscillator (LO)
frequency can be changed without moving the passband (imitating the Beat Frequency

Oscillator or BFO knob on traditional receivers in CW mode).

In the right bottom corner, the actual frequency of the receiver, and the frequency under
the mouse pointer is shown (if the mouse is moved over the waterfall display). With the

buttons, several different demodulators can be selected (see in Figure 5).

145.501,8 MHz

FM AM LSB USB Cw

—_

Figure 5: Frequency and modulation
settings

11

Figure 6 shows that the waterfall display itself can be zoomed by moving the mouse

pointer over it and turning the mouse wheel.

] I
145.0 MHz

144.55 MHz

l|
=
=

<

IIEIIIlldglllililll|illlillllslIII!IIII;!‘IEIEIII!IIIIIII!IAIIIIIIIII[II
144.48 MHz 144.49 MHz 144.50 MHz 144.61 MHz 144.52 MHz 144.53 MHz 144.54 MHz |

Liw lan L. Rsl ol Laaglagilinl e L Lo |
14450

TP TR PR S N) Y O] P, o |
144,49 MHz 44,50 MHz

14451 MHz

Figure 6: The waterfall display at different zoom levels

The zoomed spectrum display can also be panned by pressing and holding down the left
mouse button. There is a scrollbar on the right side of the waterfall display, which
allows the user to go back in time and view any part of the waterfall drawn since

loading the page.

In Figure 7, the logging section can be seen, which provides additional debug and

contact information for bug reports.

— openwebrx.js (beta) client log

= Author: . Please send me bug reports and suggestions.

- Client status: audio recv. at 40960 sps (45651.7 sps avg.), feed at 45651.7 sps output
Your client ID is: ¢5217c2e305e5d916dc75a3292b7613a

WebSocket opened to ws://localhost:8073/ws/
_ Acknowledged WebSocket connection: CLIENT DE SERVER openwebrx.py
= Web Audio API succesfully initialized, sample rate: 44100 sps

Figure 7: Log display and status information

12

Figure 8 shows a screenshot of a public server running OpenWebRX, as it has already

been downloaded and tested by several amateur radio operators.

w OpenWebRX | Open Source Web-based SDR for everyone! - Chromium T
il OpenWebRX | Open 41 x

& 3 C [websdr.hu:8080 P =

I WEBSDR OPenwebsdr HU . -
= = =TI
& websdr-hungary-chat (@

ha7ilm ' h ha7ilm
t
HGarc H
-2 online +
hazim b Achat by tlkio

Hosted an Linode

e

[etne
NIRRT S . VO R IR R g —

Author: ease send me and suc 5.
Client s: i a eed at 41403.1 sps output 2 ' : : - Erse

" 5ca866: g 3+ 3 3 : :

WebSocket opened to ws: ir.hu: 3 Sk £ - = 145.594,0 MHz
Acknowledged WebSo: VER openwebrx.py 3 a2 5 E = Z

Web Audio API succesfully in d, sample rate: 44100 sps - z

i
:

% e * FM AM LSE USB CW

z 37§ Foss -

Figure 8: The first public OpenWebRX server running from Nadap, Hungary

13

4 Fundamentals of Software Defined Radio

4.1 Introduction and history

As OpenWebRX heavily builds on SDR concepts, it accounts for giving an overview on

SDR technology, and how it is related to my project.

The systems that the term ‘Software Defined Radio’ covers, implement some or all
physical layer functions of a radio in software instead of hardware, which also implies

that the software does digital signal processing (DSP) tasks. [1]

In fact, SDR is not new technology, it has been available since the 1980s. The term
‘software radio’ has been first used by the employees of E-Systems Inc. in a company
newsletter in 1984. The first military program that had the physical layer components of
a radio implemented in software, was called SPEAKeasy, designed by DARPA in the
United States. The main objective was to build a single radio that is compatible with ten
different military radio protocols, can operate anywhere between 2 MHz and 2 GHz,

and also have the possibility of including new modulations and protocols later. [2]

Although the theoretical background required for building an SDR system has been
around for a long time, its true potential have been opened slowly, in parallel with the

increasing computational performance of computers.

4.2 Advantages and disadvantages

Before diving into SDR, I compare it to traditional analog radio systems and collect its

key features.

One of the advantages of SDR is reconfigurability, which results in its flexibility. The
the key part of an SDR system is the software, which can be modified and updated at
any time. [3]

Let us take an example: we want to add a new demodulator to multi-mode receiver for
satellite data transfer applications. Instead of having to redesign the circuit, update the
printed circuit board layout, have the board of the new prototype manufactured, have all
the components mounted, and go through the bring-up process, just updating the

software is enough. Installing a firmware update can even be done by the customer, or

14

done remotely over the network, so it greatly reduces maintenance costs in several
situations. Similarly, new demodulators could be easily added to OpenWebRX, and this

requires only changes to the software.

On the other side, all SDRs have an analog RF front-end, and naturally, if any changes
in requirements affect it (e. g. a change in the tuning frequency range), then it it

impossible to avoid hardware modifications.

Reconfigurability is also essential in cognitive radio, which focuses on solving the
problem of combinatorial optimization of different modulation schemes, power levels,
error control codes, operating frequencies, and also network behavior to achieve the best
result in communication. It has also received great attention by regulatory agencies
recently, as static allocations in the radio frequency spectrum are becoming more and
more congested, but on the other hand, most of the frequency spectrum is unused at a
given location and time. One application of cognitive radio, dynamic spectrum access

can help with this issue. [4]

Another key point of SDR is reliability. DSP algorithms work on discrete signals and —
except for some special cases - have fully predictable output, giving exactly the same

result for the same input every time.

If we use a DSP algorithm instead of hardware realization, no unwanted signal coupling
can occur between printed circuit board (PCB) traces, and no distortion can occur
because of nonlinearities that electronic components would introduce. On the other
hand, SDR is limited by the properties of quantization and sampling introduced by the
analog-to-digital converted (ADC) or digital-to-analog converter (DAC). An imperfect
DSP implementation can also introduce noise and harmonics. The digital noise
generated by the high-speed digital processing parts can occur on the analog front-end,

but it can be solved by sufficient design.

Another aspect of reliability is the lifetime of the device. In an SDR, several hardware
components are substituted by software. Until the processing unit and the memories
belonging to it are operational, the software will produce the same results, without
performance degradation due to aging or environmental effects. Faults caused by a
single electronic component are less likely to happen, as there are less components.

While this is certainly an advantage, it is likewise important to note that the complexity

15

introduced by software results in more fault possibilities. Today's SDR is typically an
embedded system that can range from a single microcontroller (MCU) to a fast SoC
with double data rate (DDR) memories, or may even be a dedicated server computer. On
the software side, they can incorporate a single bare-metal C program or a complex real-
time operating system (OS) with scheduling and peripheral device drivers. Complexity
rises when we optimize the system by offloading the processing task to special
peripherals like a field-programmable gate array (FPGA) chip or a graphics processing
unit (GPU) to achieve highly parallel processing.

Along with manufacturers of embedded digital RF solutions, SDR technology is also
appealing for short wave listeners, amateur radio operators and military users. The
ADC:s available today provide so high bandwidth that several channels of conventional
analog communication modes (amplitude and frequency modulated, or single-sideband
transmissions, as well as narrow-band data modes) can be monitored at the same time.
Radio applications using carrier frequency of 30 MHz or below use small bandwidth,
typically less than 10 kHz. Even with a general purpose sound card available in a laptop
computer, 48-192 kHz bandwidth can be monitored if connected to sufficient SDR
hardware. There are numerous simple circuits available, providing a single band

receiver for specific amateur radio bands.

If we calculate the Fast Fourier Transform (FFT) of the input signal on the computer,
waterfall display is available (in OpenWebRX as well), which greatly helps to detect
and select the transmission to be demodulated. Amateur radio transmissions tend to be
less than 3 kHz in bandwidth (to be received with any traditional SSB receiver), so
several channels can be monitored at once. Some bands can be almost entirely
monitored with a single sound card (e.g. the 40-meter amateur radio band from 7000-
7200 kHz). As of the last stage of filtering does also happen on the PC, filter bandwidth
is also selectable on the graphical user interface (GUI). Such modification may require
soldering a new mechanical filter into a traditional receiver, but with SDR, it just takes

some CPU cycles to design a new filter with different parameters.

However, systems that can digitize and monitor the whole high frequency (HF) range at
once, also do exist. A good example is the WebSDR receiver at the University of

Twente. [5]

16

Military systems can also record the digitized samples for later processing [6], and some
are also capable of automatic modulation recognition and decoding [7]. Several
software tools exist for analyzing modulations, an example is Code 300-32 by HOKA
[8]. Also GNU Radio provides useful blocks that help to determine the parameters of

digital modulations (e. g. constellation and the bit rate).

4.3 Software Defined Radio architectures

To generate or process RF signals with digital circuits, we have to interface the digital
and the analog parts of the system: DACs and ADCs are used for this purpose. There are
still several typical configurations for an SDR system. In this part I classify them by the
place of conversion [6], also addressing which systems are supported by OpenWebRX.

Figure 9 below illustrates typical SDR architectures.

Digital signal ® ® w
IF downconversion Baseband Baseband

\/ downconversion demodulation
Digital BB ® ® A 4
IF downconversion Baseband Baseband

\/ downconversion demodulation
Digital IF ® ® w
IF downconversion Baseband Baseband

\/ downconversion demodulation
Digital RF & 0% —
IF downconversion Baseband Baseband

downconversion demodulation

Figure 9: SDR configurations based on [6].

The ‘digital signal’ implementation means that everything is implemented in hardware,
including demodulation, but the output signal of the system is digital data. Older radio

modems did not use DSP.

The ‘digital baseband’ means that the baseband signal is sampled and processed by DSP
for demodulation. An example of such system is a PC sound card connected to an

amateur radio transceiver for using digital modes like BPSK31, RTTY, Olivia, etc. The

17

bandwidth of the transceiver in SSB mode is usually less than 3 kHz, but it is enough
for these low bit rate signals. There are multiple free software available for this purpose

(Fldigi, gMFSK).

In a ‘digital IF’ system, the signal is sampled at the intermediate frequency after
downconversion and filtering. Nowadays even the lower priced marine and amateur
transceivers have built-in DSP functions that work similarly. Typically noise reduction
and another level of filtering is performed via DSP, or sometimes the whole

demodulation process.

In a ‘digital RF’ system, the RF signal is directly sampled at the converter. It still needs
filtering and amplification on the analog side, but all other processing (including
downconversion) is implemented in software. Nowadays so-called RF DACs and ADCs
are available for purchase. A good example is a 14-bit, 2.3 Gsps RF DAC, the
MAX5879 integrated circuit. It has selectable output impulse response, and with the
built-in radio-frequency-return-to-zero (RFZ) mode, even using the 6th Nyquist zone is
possible, although usually such devices only support using the second and the third
Nyquist zone. Another good example is the LTC2208, a 16-bit ADC which supports
sampling rates up to 130 Msps. Its noise floor is at 78 dBFS, and the spurious-free
dynamic range (SFDR) is 100 dB. It can be used to sample the whole shortwave (0-30
MHz) at once. (In a ‘digital baseband’ configuration, these ICs can also be used to
generate or decode modulated high-speed data transmissions, over 10 Mbit/s.) However
‘digital RF’ applications usually work with high sample rates and require high-speed
processing (usually implemented in FPGA). An example of a real-world hardware that

use this technique is the HPSDR Mercury module.

It is important to mention that most SDR receivers use direct quadrature
downconversion. This kind of architecture is a form of ‘digital IF’ or ‘digital baseband’,
depending on which functions are implemented in DSP. As seen in Figure 10 the real
valued RF signal is mixed with a sine and cosine (thus an oscillator with complex
output). The low-pass filters remove the out-of-band components, and the resulting
complex signal is centered at DC, and can be sampled with two ADCs. Despite its

simple design, such architecture can produce quite good results.

18

TAntenna

@ _
@cos(wt)
DSP (]
@ sin(wt)
® o

Figure 10: block diagram of an SDR receiver using direct quadrature downconversion

OpenWebRX was designed to support ‘digital IF’ SDR receiver hardware that uses
quadrature downconversion. Currently, only RTL-SDR devices (described later in the

thesis) are supported, however, support for other hardware may be added later.

4.4 The challenge of dynamic range

In an application mainly designed for amateur radio purposes, reception of weak signals
(just above the noise floor) is an important question, and the performance of SDR radios
from this aspect is also important for SDR software such as OpenWebRX. As already
noted above, a critical point of an SDR receiver is the ADC. In addition to the sampling
rate, another important parameter of this component is the bit depth, which is closely
coupled with the dynamic range of the receiver. One definition for the dynamic range in
a DSP-based receiver is the proportion of smallest and highest values that can be

represented digitally. As every additional bit doubles this highest value, every bit means
an additional dynamic range of 20'10g10(2)=6.02 dB . Taking a sinusoidal signal and
the quantization noise into consideration, the maximal possible signal-to-noise ratio
(SNR) for an ADC can be calculated as SNR, =(1.76+6.02-N)dB where N is the

number of bits. However, on a real device the measured SNR is always lower than the
theoretical, this is why the effective number of bits (ENOB) is introduced. It can be
calculated from the measured SNR by (1).

SNR 4, —1.76

ENOB:T (1)

19

For example the ENOB of an LTC2216 ADC is 12.83 bits (the SNR was actually
measured 79 dBFS at 140 MHz) [9].

If a ‘digital IF’ system is considered, the sampled signal may contain multiple useful
signals. The digital filter selects one of these and suppresses the others. The automatic
gain control (AGC) reduces the gain of the input signal entering the ADC, to prevent
clipping. However, if the signal we want to select is very weak, and there is another
strong signal within the IF bandwidth, both of them get sampled, but most of the
dynamic range of the ADC will be used up by the strong signal we want to suppress,
instead of the weak signal we want to select and decode. After filtering, our weak signal
will have much lower dynamic range (thus quantization resolution) than it could have if
the strong signal was not present and the AGC could set the gain higher, so it might be
harder to copy. If the difference between the level of the two signals is high enough, our

weaker signal may even be buried in noise (Figure 11 illustrates this situation).

R I . A

0] f 3f 0 f 0 3f 0 3f
Figure 11: the input signal (1) consists of two components (2-3), one of which is

selected by the filter (3), but it crosses less quantization levels than if only this signal
was present on the input (4), thus it has less dynamic range, even if amplified digitally

—

In conclusion, a narrow-band analog receiver can provide better results than a ‘digital
IF’ SDR in terms of selectivity and handling strong signals. However, regarding other
advantages of SDR, these two are hardly comparable, and in my application the SDR is
the only good choice (virtually unlimited number of receivers can be created within a
given frequency range, one each for all clients, and the limiting factor is the CPU usage

of the receivers).

4.5 Universal SDR hardware

If an SDR receiver hardware can be tuned within a wide frequency range (usually from
a few hundred MHz to a few GHz), and contain an ADC that supports high sample rates
(usually 1 Msps or more), it might be considered universal, as it can sample most of the

signals transmitted by common RF communication devices.

20

It is a good choice for OpenWebRX and other SDR software to support such hardware
(comparison of some devices is shown below in Table 1), because the reception of

various frequency bands is possible (also depending on the antenna).

SDR Maximum RX ADC Tuning range Transmit capability | Price
sample rate resolution

USRP N210 [10] 25 Msps 14 bit DC - 6 GHz Yes 1717 USD

Nuand bladeRF x40 [11] | 40 Msps 12 bit 300 MHz - 3.8 GHz Yes 420 USD

HackRF One [12] 20 Msps 8 bit 10 MHz - 6 GHz Yes 300 USD

AirSpy [13] 10 Msps 16 bit 24 MHz - 1750 MHz No 200 USD

FunCube Dongle+ [14] | 192 kHz 16 bit 150 kHz - 240 MHz, No 200 USD

420 MHz - 1.9 GHz
RTL-SDR [15] 2.4 Msps 8 bit 24 MHz - 2200 MHz * | No 10 USD

* depends on tuner IC on board

Table 1: Summary of universal SDR hardware parameters

4.6 RTL-SDR

The currently supported SDR hardware for OpenWebRX is the cheapest of all: DVB-T
tuner USB dongles with RTL2832U chip (will be referred as ‘RTL-SDR’ in the thesis)
can be used as a general purpose SDR hardware front-end, as these devices can provide

a 8-bit baseband 1/Q signal via USB interface. A sample device is shown on Figure 12.

Although their primary function is to demodulate DVB and send the MPEG transport
stream to the host, they are also capable of receiving broadcast FM and DAB stations. It
was discovered by the open-source community that the Windows driver sends the raw,
digitized baseband I/Q signal to the PC, where it is demodulated in software.
Developers at Osmocom has decided to create a library that handles this mode of
operation, and it was named librtisdr. Since then, several SDR applications have
included support for this hardware using this library. Dedicated SDR hardware of course
provide better performance than these mass produced, consumer-grade products. The
main benefit of RTL-SDR is the price of the devices (around 10-40 USD in 2014), this

is why it is popular among hobbyists and amateur radio operators.

21

USB interface

Tuner IC

Figure 12: circuit board of RTL-SDR

Regarding architecture, a typical RTL-SDR device can be classified as a ‘digital IF’
device that uses quadrature downconversion. It consists of a tuner IC, and an
RTL.2832U chip, which contains two ADCs, a DVB demodulator and an USB interface.
The tuner IC is responsible for downconversion of the RF signal to baseband or IF
(depending on part), and it can be controlled via I°C. Table 2 summarizes the different

tuning limits for different types.

Tuner IC Tuning range
Elonics E4000 |52 — 2200 MHz (gap between 1100 - 1250 MHz)
R820T/R828D |24 — 1766 MHz

FCO0013 22 -1100 MHz
FCO0012 22 —948.6 MHz
FC2580 146 — 308 MHz, 438 — 924 MHz

Table 2: Summary of tuning range depending on tuner IC

Although there is not much official documentation publicly available regarding the
RTL2832U, it is known that it digitizes the baseband or IF signal at a conversion rate of
28.8 Msps, and it contains a DDC in hardware, to produce the baseband I/Q signal of a
lower sample rate [16]. The DDC uses a programmable symmetric FIR filter of 16 taps,
but its length sets the limit for the lowest output sample rate to be used without aliasing
problems. If librtlsdr is used, the built-in DVB demodulator is switched off, and the 1/Q
samples are directly sent to the host PC via a bulk USB endpoint. It seems that the USB
interface has a limit on data rate: above 2.4 Msps it starts to drop samples. It is also

remarkable that there have been various hardware and software modifications, primarily

22

with the goal of extending the tuning range down to the high frequency (HF, 0-30 MHz)

range.

A simplified block diagram of a DVB-T tuner with RTL2832U is shown on Figure 13.

12C 28.8 MHz
0
/ADC (CTL]

\ADC
Tuner IC RTL2832U

Figure 13: suspected architecture of an RTL-SDR (without
DVB-T demodulation blocks)

As RTL-SDR devices are widely used by the amateur radio and hobby SDR community,

it was a rational choice as the first supported hardware platform for OpenWebRX.

23

5 System design

In this section I write about the concepts behind OpenWebRX and its structure.

5.1 Analysis of similar software

I have tested other SDR software that provide web interfaces, and collected their

advantages.

WebSDR [17] by Pieter-Tjerk de Boer, PA3FWM is a closed-source application that
supports SDRs based on audio cards, and also RTL-SDR. The last version comes with a
HTMLS5 interface (older versions loaded a Java Applet into the browser). Users can
independently tune the receiver (within the bandwidth of the I/Q signal). The bandwidth
of the filter can be set from the web interface. The frequency scale may contain labels,
which mark the stations. There is also squelch and automatic notch functionality, and a
chat box where users can talk about the received signals. Using it requires only 80-300
kbps of network bandwidth at the client. It even runs on ARM single board computers
(SBC) like the Raspberry Pi. There is also a special version that has very high
bandwidth (covering the whole HF), and it uses GPU for DSP on the server.

24

ShinySDR [18] by Kevin Reid, AG6YO provides a HTMLS5 interface, and is released
under GPL license. In Figure 14, we can see how it looks like in the browser. ShinySDR
is implemented in the python programming language and uses GNU Radio for
processing. It supports multiple demodulators at once. The current version is very
smooth to use, and is quite practical for a private remote controlled station (as an access
control feature, it requires a special key in the URL to connect, and it gives full control
over the receiver hardware, including gain and center frequency setting). It only
supports Google Chrome as a client, and any SDR hardware compatible with the gr-

osmosdr GNU Radio blocks can be used as an input source.

ShinySDR - Chromium

[0 shinysor ««
€« =2 C [localhost:8100/RAEpiwHY)SJFEgnNnTx36gA/ o =
Spectrum Rate 30.00 Resolution 4096 Radio Config Frequency DB

>Map |, Ry Type Channel ¥

Freq

Mode Wide FM ¥

145,000,000 pEE8

AGC On Manual Gain Stages

RF source |OsmoSDR ¥

0.00
¥ more v
Freq.corr. (PPM)0
de_cancel 87.90WFMEM 87.9
: 88.10WFMFM 88.1
e 88.30WFMEM 88.3
€ Receiver b 88.50WFMEM 88.5
88.70WFMEM 88.7

l45.2M [145.25M [1453M [145.35M [1454M |145.45M [145.5M [145.55M [145.6

Channel frequenc 88.90WFMFM 88.9
89.10WFM FM 89.1
145,447,648 89.30WFMFM 89.3

89.50WFM FM 89.5

AM || CW | RawlQ

S0 SRR SB0) || | oo owrMEM 837
SVOY kst 90.10WFM FM 90.1
RF -24.69 | 90.30WFMFM 90.3
Squelch -100.00 | 90.50WFMFM 90.5

90.70WFM FM 90.7

i -34.87
Sl 90.90WFM FM 90.9
Volume 5.25 | 91 10WFMFM 91.1
91.30WFMFM 91.3
B 980 | 91 sowFMEM 915 -
4 » | * Save to database = Receive all in searct

Figure 14: Screenshot of ShinySDR

25

WebRadio [19] by Mike Stirling is written in C++, and is released under AGPL license.
It does not depend on any external DSP library, and also provides full access to the
receiver (currently only RTL-SDR is supported). A screenshot of the application is

shown in Figure 15.

= WebRadio - Chromium - + %
' [WebRadio o x
€« C' | [} localhost:8080/static/ui.html o =

WebRadio

~ Controls a Tuner Info

VFO
RF Gain: Tuner name: Generic RTL2832U OEM n
Driver: RtlSdrTuner
IF Gain: Product: RTL2838UHIDIR u MHz ﬂﬂ

Manufacturer: Realtek
Serial Number: 00000001

AGC Sample Rate: 2400000 Hz

. i Ll b B Lt LA 1L L R L
325 144.725 145.125 145,525 145.925 146.325 146,

+# Controls

" 45 53500..,

AM FM WFM LSB USB
IF Bandwidth:

AF Bandwidth:

Squelch:

e 0:15 o) o=

(c) 2013 Mike Stirling -

Figure 15: Screenshot of WebRadio

I really appreciate all of these projects, because they have given me many good ideas for

my implementation, and also helped me making particular design choices.

5.2 Planning the structure

Figure 16 shows how OpenWebRX can be separated into several different parts.

openwebrx.py
RTL-SDR

audio stream
l‘llﬁ ﬂ Client

raw 1/Q data spectrum display

Front-end

Figure 16: Parts of OpenWebRX

The application definitely needs a web server to serve a HyperText Markup Language
(HTML) page content and its embedded media (images, Cascading Style Sheets — CSS,

JavaScript) to the web browser, as these contain the UI for the receiver. I have decided

26

to implement the application as a standalone software instead of a server-side script or
common gateway interface (CGI) executable for an existing web server, because it is
easier to manage background threads in a standalone application. I have chosen the
python programming language for implementing the server, as it has a lot of required
functionality built-in (handling sockets and creating a web server is a matter of a few

lines of code).

An important part of a web application is the front-end which consists of the already
mentioned media elements. I implemented the waterfall display and audio streaming
functions in JavaScript, which runs in the browser of the user. In addition, major
browsers (including Google Chrome and Mozilla Firefox) compile JavaScript to
machine code. Although JavaScript still does not reach the speed of native applications,

it can run a lot faster than at the time it was only an interpreted language.

We also have to do digital signal processing on the server in order to generate the
demodulated audio and the data for the waterfall diagram to be sent to the client’s web
browser. I originally wanted to use GNU Radio for DSP, as it provides a flexible library
and framework for Software Defined Radio applications, and can be easily interfaced
with python. However, later I have found that GNU Radio is hard to build from source
code in some cases, and is advanced to compile on ARM SBCs (and it also takes a lot of
time). Although OpenWebRX had a working version that utilized GNU Radio, I decided

to write a DSP library myself and use it instead.

In the following parts of the thesis, I will give a detailed explanation on the server-side

and client-side code structure of OpenWebRX, and also on the DSP algorithms used.

27

6 The server application

The main part of the server application resides in the openwebrx.py python script. It
contains multiple classes, and imports some python modules that belong to the project.
While being run, it starts several threads, most of which execute external processes for
signal processing and distribution. Communication between the external processes is
done using sockets. Between the external processes and the main program, it is done by
FIFO (first in, first out) queues provided by the operating system. Figure 17 is to

visualize inner operations of the server application.

28

rtl_thread
rtl_sdr - | nc ' socker

raw 1/Q data
rtl_mus_thread)
SOCKET rtl_mus.py | SOCKET ==
Listening on TCP port 4951 SOCKET
(I/Q data server)
SOCKET ==
pS J
raw |/Q data

/spectrum_thread
SOCKET nc | csdr fft_cc

dsp
.
httpd h
Listening on TCP port 8073 MultiThreadHTTPServer
(Web server) J
httpd R
WebRXHandler
. TCP (HTTP)
5@ Client fetch regular page
J
(‘httpd
WebRXHandler
. TCP (HTTP)
ﬁ:‘ Client < (——— handle WebSocket
rxws dsp
SOCKET nc | csdr ...
/

python thread

subprocess
python class

python module

(httpd N

WebRXHandler
handle WebSocket

=\

rxws dsp

NTSOCKET nc | csdr ... ks

v

H; Client< TCP (HTTP)

Figure 17: Simplified diagram of interconnections within the OpenWebRX server

application

When the server application is started, it starts the httpd thread (web server), which

instantiates the MultiThreadHTTPServer class, derived from the HTTPServer class from

the built-in BaseHTTPServer module.

Every time a (HyperText Transfer Protocol) HTTP request is made from a client to the

web server, MultiThreadHTTPServer creates a new instance of the WebRXHandler

class, also running in a separate thread. WebRXHandler determines whether the request

29

targets regular files (containing the parts of the front-end in the htdocs subdirectory) or

opening a WebSocket (if the path starts with /ws/).

The htdocs directory also contains a file called index.wrx. It is the HTML template of
the default page, which gets loaded if the browser requests the root URL ‘/’. It contains
special tags that replaced dynamically by the web server (while processing the request).
%[CLIENT _ID] is the identifier of the client, which is used for making the WebSocket
connection. %[WS_URL] is the WebSocket base URL, containing the appropriate port
(its use will allow OpenWebRX to be included into existing sites using a proxy script).
The remaining tags are for providing information about the receiver, and they are

replaced with values set in the configuration file (detailed in Table 4).

WebSockets are handed by the rxws python module, which contains all necessary
functions to perform the initial handshake, assembling and parsing WebSocket frames,
encoding and decoding the payload. It is based on RFC6455 [20], but it implements

only the required subset of the protocol.

Demodulation is started when a client makes a successful WebSocket connection, after
it has also performed a handshake with the OpenWebRX server. The server
continuously sends the demodulated audio and the FFT of the signal (for the waterfall

display) to the client. The client can also send messages to the server, to set:
- filter passband

- offset frequency (it is a parameter to the DDC, the offset between the actual
receiver frequency of the client and the center frequency of the receiver

hardware),
- the demodulator used (AM/NFM/SSB).

Table 3 contains examples of such communication.

Source |Example message Notes

Server |CLIENT DE SERVER openwebrx.py Handshake question

Client SERVER DE CLIENT openwebrx.js Handshake answer

Server MSG setup bandwidth=250000 center_freg=145500000 |Send receiver/DSP information
fft_size=4096 fft fps=5 for client initialization

Server FFT <an array of 4096 floating point wvalues> FFT data

Server AUD <an array of 16-bit integer values> Audio data

Client SET offset_freq=-50000 Change offset frequency

30

Client SET low_cut=-4000 high_cut=-400 Change filter parameters

Client SET mod=SSB Change modulation

Table 3: The application layer protocol of the WebSocket connection used in

OpenWebRX

The demodulator itself is an instance of the dsp_plugin class. Consequently, the signal
processing part is based on plug-ins, although currently only the plugins.dsp.csdr plug-

in exists. A new plug-in may be created later to add GNU Radio support again.

The default csdr plug-in creates a processing chain out of csdr processes, with the help
of the shell application. Each client has a separate dsp_plugin instance, with a separate
chain of processes. The output of each process in the chain is connected to the next one
by a FIFO (provided by Linux). The input of the chain is the netcat (nc) command that
creates a plain TCP connection to the I/Q data server provided by rtl_mus.py (explained
in detail later). The output of the chain is read by the csdr plug-in and passed back to the
appropriate httpd thread. An example chain for FM demodulation is shown below:

nc localhost 4951 | csdr convert_u8_f | \

csdr shift_addition_cc —--fifo /tmp/openwebrx_pipe_3068669068_shift | \
csdr fir_decimate_cc 5 0.03 HAMMING | \

csdr bandpass_fir_fft_cc ——-fifo /tmp/openwebrx_pipe_3068669068_bpf \
0.0064 HAMMING | csdr fmdemod_quadri_cf | csdr limit_ff | \

csdr fractional_decimator_ ff 1.13378684807 | \

csdr deemphasis_nfm ff 44100 | csdr fastagc_ff | csdr convert_f_ il6

The appropriate parameters for the csdr processes are determined by the csdr plug-in
automatically, based on the configuration. Regarding csdr parametrization, the

README.md in the git repository of csdr contains information.

The csdr processes read data from the standard input and write processed data to the
standard output. Some csdr processes in the chain can be controlled without restarting
the whole chain. These read from an additional FIFO, to receive control instructions. In
the example above, when the user changes the frequency, a floating point number
(converted to alphanumeric characters) and a newline is written to the pipe
/tmp/openwebrx_pipe_3068669068_shift in order to control the corresponding process

started with the following command-line:

csdr shift_addition_cc —-fifo /tmp/openwebrx_pipe_3068669068_shift

31

The rtl_mus_thread run the RTL Multi-User Server application (rtl_mus.py) as an
external process. This rtl_mus.py has been taken from one of my older projects. It
connects to a server that sends I/Q data over TCP, and distributes the data to multiple
clients. I primarily wrote it because the rtl_tcp application that came with librtlsdr only
supports one client at once, and I wanted to overcome this limitation. However, this
application has turned out to be handy in distributing the I/Q data between the threads of
OpenWebRX. If the appropriate port is opened and the access rights are given, any
regular SDR software that support the rtl_tcp protocol can also be used to connect to
port 4951 and receive the signal instead of using the web UI (however, this takes much

more network bandwidth).

The rtl_mus_thread indeed gets its I/Q data from rtl_thread. It runs a command that
starts a server that provides I/Q samples on a given port (8888 by default). The
command is generated based on receiver settings. An example of such command (for

using RTL-SDR as an I/Q input source):
rtl_sdr -s 250000 —-f 145525000 -g O - | nc -vvl 127.0.0.1 —-p 8888

As netcat is used, it can serve only a single client (just as if rtl_tcp was used). This

client will be rtI_mus.py, which further distributes the stream.

The rtl_mus_thread and rtl_thread are started when OpenWebRX starts, and the
spectrum_thread is automatically started as well, to run in the background and
repeatedly calculate the FFT of the signal (to provide data for the waterfall display with
a given frame rate). It also uses the dsp_plugin to create a processing chain that retrieves
the 1/Q stream from rtl_mus.py. An example command-line for this processing chain
(when all settings are default):

nc -vv localhost 4951 | csdr convert_u8_f | \

csdr fft_cc 4096 27777 | csdr logpower_cf =70

Configuration options for OpenWebRX are stored in the config_webrx.py and
config_rtl.py files. The latter is the configuration for rtl_mus bundled with
OpenWebRX, and its safe defaults are not needed to be changed under normal
circumstances. The file confg_webrx.py contains several configuration settings
regarding server and receiver configuration, and displayed information. These are listed

in Table 4.

32

Configuration option

Description

web_port

The default port the web server listens on.

server_hostname

The hostname of machine running OpenWebRX. (It is used for generating
%[WS_URL], and front-end will fail to load if it is set incorrectly.

receiver_name

Replaces %[RX_TITLE] in .wrx files

receiver_location

Replaces %[RX_LOC] in .wrx files

receiver_dra

Replaces %[RX_QRA] in .wrx files

receiver_asl

Replaces %[RX_ASL] in .wrx files

receiver_ant

Replaces %[RX_ANT] in .wrx files

receiver_device

Replaces %[RX_DEVICE] in .wrx files

receiver_admin

Replaces %[RX_ADMIN] in .wrx files

receiver_gps

Replaces %[RX_GPS] in .wrx files

photo_height

Replaces %[RX_PHOTO_HEIGHT] in .wrx files

photo_title

Replaces %[RX_PHOTO_TITLE] in .wrx files

photo_desc

Replaces %[RX_PHOTO_DESC] in .wrx files

dsp_plugin Determines the DSP plug-in to be used (currently only a csdr plug-in is available).
fft_fps Determines the frame rate to update the waterfall display at the client.
fft_size Determines the resolution of the FFT.

samp_rate

Sets the sample rate of the receiver hardware.

center_freq

Sets the center frequency of the receiver hardware.

rf_gain

Sets the gain of the receiver hardware (in dB).

start_rtl_thread

If this boolean value is set to True, OpenWebRX starts the rtl_thread.

start_rtl_command

The command to be run in rtl_thread.

Table 4: Configuration options in config_webrx.py

33

7 The client front-end

The front-end contains the files required for running the web application in the browser.
These files are contained under the htdocs subdirectory of OpenWebRX, and the web

server sends them to clients on request.

The file index.wrx is the HTML layout for the web GUI of OpenWebRX. As already
noted above, it contains some special tags like %[WS_URL] that the web server replaces
with actual values on every request. Images, style sheet and script files are referenced

from within index.wrx.

The directory htdocs/gfx contains all the graphics elements used in the user interface.
These were all created using open-source graphics editing tools (Inkscape and GIMP).

In Figure 18, we can see how the graphics design was created with such software.

- webrx2.svg - Inkscape |
Fajl Szerkesztés Nézet Réteg Objektum Utvonal Szoveg Sziirdk Kiterjesztések Segitség
i ¥R IERIVeYRWVI|/AS 4G E T L I R
IS ol I I 1.{5? (RN Rl B AR B ii??‘5 ol | ' .I PR B O | |.| .I [I B B |]'B|5‘IJ TR B IR |lli?? [B B B |19IDIIJ ToR LR m\
s — o '3
B4 ¥4 " HASKFU Amateur Radio || ®
a)| Yw - (g) i : T
£ ©|JL m fﬁc 'le ()’J n . Budapest, Hungary (Loc || ™
+ e g a
L] b £
N 5
N
O e
Gy 4 *
© £ o]
% '
f i
g /
U = =
A @
B 1o @ ’
. 145300 145400 a

X—t-:—_i_:_] o

Kitoltss, SOOI XEIBTA8 0 oo |3
Km‘_‘me:al e T A luu . @ A -1 réteg = Szerkesztendo objektumok kijeldlése: hiizdssal. Ezen objektum szer... v "1gq 5 M| 396% "

Figure 18: Editing design in open-source vector graphics tool, Inkscape

The openwebrx.css file is written in Cascading Style Sheets (CSS) language, to
describe the look of the HTML elements on the front page. It also contains a reference

to the CSS3 web font under the directory htdocs/gfx/font-expletus-sans.

34

The openwebrx.js file is written in JavaScript language, and it is the heart of the
OpenWebRX front-end, as it provides all interactive behavior of the web page. Its

operation will be described in the next section.

The user is redirected to upgrade.html if the web browser application (determined by
the User-Agent field in the HTTP request) is not supported (currently only the newest
versions of Mozilla Firefox and Google Chrome are supported). On this page, a warning
message is shown to the user about the unsupported browser, but the user can still select

to continue to main page of the receiver.
The favicon.ico is the icon shown on the browser tab next to the title of the page.

Some users have reported that they could connect to OpenWebRX and use it from
mobile devices (tablets running Android). I could not make tests on Android, because I
did not have a device for testing. The built-in web browser that some older Android
versions ship with cannot be used, because it lacks some required HTMLS5 features. In
this case Google Chrome from Android should be downloaded. It is also known that
some features (like zooming the waterfall diagram) currently do not work on mobile

devices.

7.1 JavaScript, the heart of the front-end

In general, OpenWebRX was designed to work without the need of downloading
additional JavaScript libraries. The only JavaScript file is openwebrx.js that does

everything that we need in this particular application.

When index.wrx is loaded, the function openwebrx_init is called in openwebrx.js. It
initializes UI elements (e. g. panels), and opens the WebSocket to the server. (Using
WebSockets is the only easy way to do continuous two-way communication between

the web browser and the server.)

After a handshake process, the server sends the parameters of the receiver (the center
frequency and the sampling rate) and preconfigured settings of the waterfall diagram
(FFT size, FFT frame rate). The waterfall display and the frequency scale is initialized

accordingly.

The first three characters of the messages indicate the type of the message (see table 3),

35

and the fourth byte is a space character. We can get the payload from the message if we

skip the first 4 bytes. These rules apply to all messages, except the handshake messages.

When the script receives a message starting with the letters ‘FFT’ over WebSocket, it
uses the payload to draw a new line on the waterfall display. The payload contains
values of relative received signal strength in dB, corresponding to specific frequencies

within the bandwidth of the I/Q signal, with a given resolution.

The waterfall display itself is made of <canvas> elements, that can be used for drawing
freely from JavaScript. When a canvas (with a height of 200 pixels) gets filled, a new
canvas is created. When new FFT data is received, the new line is drawn on the topmost
canvas, and all the canvases get shifted one pixel downwards. Canvases do not get
removed (unless the client closes the page), they remain in memory even if they are
shifted out of the screen. There is a scroll bar on the right edge of the window to view
the canvases that have moved to the off-screen area. Scrolling back lets us examine how

the RF spectrum changed since the page has been opened.

Internally, the width of the canvas equals to FFT size, and the canvas is shrunk to fit the
page (or stretched for the actual zoom level). It seems that modern browsers can deal
with this, however, there are two issues: panning the waterfall diagram tends to lag on
Mozilla Firefox (although it does not lag in Google Chrome), and the browser consumes
a lot of memory (as it may store a really history of the waterfall diagram, if the browser

tab is left open).

When the script receives a message starting with the letters ‘AUD’, it initializes the Web
Audio API (if it has not been already initialized), and prepares the payload to be output
to the sound card. Audio is received as an uncompressed, raw stream of 16-bit signed
integers at a sampling rate of 44100 sps, because this is the default (and so far, the only

available) output sample rate for Web Audio API in the supported browsers.

Web Audio API uses nodes with specific functions connected to each other (with a
similar concept to GNU Radio blocks) to generate, process and output audio. In my
application, a so-called ‘script processor node’ (initiated by createJavascriptNode /
createScriptProcessor methods of the audio context object) is connected to the
destination node (the sound card input). The onaudioprocess event handler is called

when the script processor node has to output a new block of data. As the size of the

36

WebSocket message payload and the buffer size of the onaudioprocess handler may
differ, the received audio data is broken into chunks that are exactly of the size that

onaudioprocess requires.

Some HTML elements in index.wrx have event handlers set to call a function in

openwebrx.js:

- clicking the buttons for demodulator selection call the

demodulator_analog_replace function, passing the modulation as a parameter,

- clicking on the receiver information in the top bar toggles the display of the

information frame.

In openwebrx.js there are also functions for making simple animations. Currently these
are only shown when the user toggles the receiver information frame visibility, by

clicking on the arrow in the top bar.

37

8 Digital signal processing in OpenWebRX

8.1 System architecture

To demodulate the signal selected by the user, and send it to the browser as an audio
stream, we need to perform signal processing tasks. In this case, the input to the system
is the RF signal after quadrature downconversion and sampling, as 8-bit unsigned,
complex I/Q data stream. It is coming from the receiver front-end (an RTL-SDR in my

application).

I have implemented a standalone DSP library called libcsdr that contains all the
necessary functions for demodulation. The library comes with a command-line program,
csdr, which is used by OpenWebRX. However, the design philosophy was to write a

library that is not tied to my application and other projects may use it independently.

In the first part of this chapter, I write about general design concerns of libcsdr, and in

the second part I give a detailed description of the algorithms used.

To achieve demodulation, several different algorithms have to be applied on the input
signal, one after the other. I call the sequence of processing these algorithms a ‘DSP
chain’. The command-line tool csdr lets us build and run limited, but sufficient DSP

chains easily.

Figure 19 below illustrates the demodulation process from the DSP aspect.

Frequency Decimating Bandpass

VQleata stieam translation FIR filter FFT filter
Demodulation Resampling AGC Stream to
browser

Figure 19: Simplified DSP chain for demodulation
The first step is channelization: to select the signal to receive, we apply frequency
translation to shift its center to DC in the frequency domain, and we decrease the

sample rate with a decimating FIR filter.

Now we can apply a band-pass FFT filter. The passband of this filter can be selected on

38

the web user interface. As it is applied after decimation, it can have quite low transition
bandwidth without the need of too much computational resources. We have two
different filters after each other, because much lower transition bandwidth can be
achieved on the decimated signal with less computation. For example, if we want to
demodulate CW signals, the passband should be only several hundred Hertz, and this
calls for a filter transition bandwidth in this order. If we wanted to design a FIR filter
that has a transition bandwidth of 100 Hz running on a signal sampled at 2.4 Msps, we
would end up in 96000 coefficients. Such a long filter cannot be effectively processed

on today’s CPUs.

The demodulator converts our complex signal to a real-valued audio signal. The
decimating FIR filter works with an integral decimation rate, and its output sample rate
does not necessarily match the 44100 Hz sampling rate required by the client (the Web
Audio API in Google Chrome did not support any other sampling rate at the time the

web front-end was implemented). To solve this problem, a resampler is used.

The Automatic Gain Control (AGC) tries to keep the signal level constant. The output of
the DSP chain is streamed to the web browser of the user.

convert_u8_f

AM FM FFT
amdemod_cf fft_execute
[fractional_decimator_ff] [fractionalidecimatoriff]

limit ff
convert f il6

deemphasis nfm_ff
- fastagc ff
convert f il6 convert_f_i16

Figure 20: DSP chains in detail: exact libcsdr functions called (through csdr wrapper
executable) when using OpenWebRX

limit_ff

Figure 20 shows what exact functions in libcsdr are used for different modulations.
These chains are fine-tuned for the best result. The FFT chain is designed to provide the

spectrum display for the user.

39

8.2 Software design for performance

I have chosen to implement the DSP functions in C, putting all the DSP processing in a
separate library. Although the web interface was implemented in python, the default
python interpreter (usually referenced as CPython) cannot provide the speed required

for DSP operations.

It seems trivial that an interpreted language is not suitable for DSP, but for testing the
possibilities, I have made experiments with WFM demodulation written purely in
python. The target hardware was a PC equipped with an Intel T4200 Dual-Core CPU
clocked at 2.00 GHz, and I could not achieve continuous demodulation and playback,
despite having spent some time on optimizations. I am also aware that there is an other
implementation of python called PyPy, which can compile python code to machine code
at runtime, but the C language is much closer to the hardware, so the algorithms can be

optimized better, and the library can be more easily ported if later required.

In Software Defined Radio, if the architecture is ‘digital IF’ or ‘digital RF’, we usually
work on signals with high sample rate, at least before channelization. On several
systems, this fact calls out for using high performance computing (HPC) solutions for
signal processing. These include using the computational power of the graphics card in
the PC (general purpose GPU programming — GPGPU), or using FPGA to achieve
highly parallel processing, instead of using a general purpose CPU that executes
instructions one after the other. DSP ICs are also a special type of CPUs, having special

architecture and instruction set for performing signal processing faster.

To speed up computations, designers of general purpose CPU architectures have also
started to include special instructions to do computation on a vector of data (on multiple
registers in parallel). This way of parallelism is called ‘single instruction, multiple data’
(SIMD), and is usually implemented as an extension for the base instruction set of a
CPU. For Intel CPUs, the technologies named MMX and Streaming SIMD Extensions
(SSE) — the latter has multiple versions — provide SIMD extensions. 3DNow! is a
similar feature for AMD CPUs, but now outdated. The latest development is Advanced
Vector Extensions (AVX) proposed by Intel and AMD. In ARM CPUs such feature is

called NEON, and is present in the Cortex-A8 processor line.

To take full advantage of SIMD extensions, one would have to code assembly (and, for

40

compatibility, include a version of the same algorithm that does not use SIMD).
However, some C compilers support a so-called auto-vectorization feature, which
means that sufficiently structured loops can be unrolled and the operations within the
loop body can be compiled to SIMD instructions. Usually only very simple loops can be
optimized with this technique, and there are also several preconditions for the successful
optimization. (For example, while filling an array, the result of the previous loop

execution cannot be referenced, complicated control flow should be avoided, etc.)

I have implemented libcsdr in a way that some DSP functions can be optimized by the
gcc auto-vectorizer. (I used gcc version 4.8.2 in my tests.) I have been optimizing the
code mainly for SSE, and partially for ARM NEON. (There are differences between the
vectorization result on the different SIMD architectures.) Compiling on an Intel CPU,
the Makefile automatically selects the sufficient switches for gcc based on the virtual
file /proc/cpuinfo, so it can handle that different CPUs have support for different

versions of SSE.

I also have written a python script, parsevect to parse the log output of the auto-
vectorizer of gcc, and provide an easily readable list of loops and the vectorization
result, with color indication (green for success, red for failure). This script gets called
every time when the library is built with GNU make, providing an up-to-date feedback
about current vectorization status of algorithms, and makes code optimization easier for
the developer. The script parsevect reads the corresponding source files as well, in
which special comments (starting with the characters: /@) can be placed to tag loops.
In the output, this is displayed with the loop vectorization result, and this helps to easily

identify loops that need restructuring for auto-vectorization (as seen on Figure 21).

41

v Terminal - + %
Fajl Szerkesztés Nézet Keresés Termindl Sigo
: not vectorized: multiple nested loops.
: LOOP VECTORIZED. fir_one_pass_ff
: LOOP VECTORIZED. fir_one_pass_ff
: LOOP VECTORIZED. fir_one_pass_ff
: LOOP VECTORIZED. apply_fir fft_cc: add overlap
: LOOP VECTORIZED. apply_fir fft_cc: normalize by fft_size
: LOOP VECTORIZED. apply_fir fft_cc: multiplication
: LOOP VECTORIZED. amdemod: sqrt
: LOOP VECTORIZED. amdemod: i*i+q*q
: LOOP VECTORIZED. amdemod_estimator
not vectorized, possible dependence between data-refs * 24 and * 16
LOOP VECTORIZED. fastdcblock_ ff: remove DC component
te: LOOP VECTORIZED. fastdcblock_ff: calculate block average
: LOOP VECTORIZED. fastagc_ff: apply gain
: LOOP VECTORIZED. fastagc_ff: peak search
: not vectorized: unsupported use in stmt.
: not vectorized: complicated access pattern.
: LOOP VECTORIZED. fmdemod quadri cf: output division
: LOOP VECTORIZED. fmdemod_quadri_cf: output denomiator
: LOOP VECTORIZED. fmdemod_quadri_cf: output numerator
: LOOP VECTORIZED. fmdemod_quadri_cf: di
: LOOP VECTORIZED. fmdemod_quadri_cf: dq
: not vectorized, possible dependence between data-refs * 29 and * 23
: LOOP VECTORIZED. deemphasis_nfm_ff: inner loop

Figure 21: partial output of parsevect (while compiling csdr on an Intel Core i7 CPU)
It is also important to note that some algorithms are impossible to optimize this way (e.
g. IIR filters, the output of which depends on the previous output), and some are
executed only once (e. g. filter design functions), so are unnecessary to get optimized.
The latter are tagged with /@@’ in the source code, and displayed in yellow in the
output. However, loops listed in red and yellow will also run, but will not be optimized

for speed.

Some of my functions in libcsdr depend on the FFT library libfftw3. This library
provides highly optimized versions of the Fourier transform for several SIMD

architectures, including SSE and NEON.

8.3 Choice of data types

Regarding implementation, it is important to decide whether it is optimal to use fixed
point or floating point representation of the signal in a given application. Fixed point
variables are used to store integers, and the gaps between adjacent numbers are exactly
the same. Floating point representation basically consists of a mantissa multiplied by ten
raised to an exponent, and the gaps between adjacent numbers vary over the represented
range, but this range is usually very high compared to fixed point numbers. While doing
calculations, round-off errors appear as noise on the signal, but this is a problem with

both representations. [21]

I have chosen to use single-precision floating-point representation for internal

42

calculations in my DSP routines. This precisely means using the float data type in C,
which is a 32-bit number with 23-bit mantissa and 8-bit exponent, and a sign bit (on the
x86 and ARM Cortex-A architectures). Floating point is easier to use for DSP, as we do
not have to be afraid of getting out of the representable range and ending up in invalid

results because of overflows.

It is also important to note that old CPUs lacked support for floating point algebra,
which also made fixed point DSP attractive. Nowadays CPUs have floating point units,

and they even support SIMD on floating point numbers.

Although my routines operate on floating point data, the input signal from RTL-SDR
and the audio output is necessarily fixed point, so I had to write data conversion

routines, which are listed in Table 5.

void convert_u8_f Converts an array of unsigned 8-bit values to
(unsigned char* input, |single-precision floating-point.
float* output,
int input_size)

void convert_f_u8 Converts an array of single-precision floating-
(float* input, point values to unsigned 8-bit.
unsigned char* output,
int input_size)

void convert_ilé6_f£ Converts an array of signed 16-bit values to
(short* input, single-precision floating-point.
float* output,
int input_size)

void convert_£f ilé Converts an array of single-precision floating-
(float* input, point values to signed 16-bit.
short* output,
int input_size)

Table 5: Summary of data conversion functions in libcsdr

8.4 Function and parameter naming conventions

While designing the APIL, I have made some decisions on naming conventions and
common parameters. All functions have one input and one output buffer. These are
called input and output, and there is also a parameter input_size, the size of the input
buffer. The output buffer should be allocated by the caller, and its size should also be

input_size unless not stated otherwise in the comments.

43

Abbreviations in function name endings give a hint on the input and the output data

types. A short list of abbreviations used:

- f: float
- c: complexft
- 116: short

- u8: unsigned char

The data type complexf is a struct that consists of two float values. Defining an own
complex type helped to get successful auto-vectorization for operations on complex

numbers.

8.5 Testing and evaluation

To ensure that the implemented algorithms work as expected, I made test benches in
GNU Radio Companion (GRC). With GRC, complex DSP processing flow-graphs can
be created, but mostly I utilized the data visualization features (scope, spectrum and
waterfall plots on wxWidgets GUI), simulated input sources (sine wave generator), the
block implementing the algorithm under test in GNU Radio, and some custom blocks to
connect libcsdr with GNU Radio. The latter were ‘Execute External Process’ and
‘Execute External Process Sink’ blocks, which allow us to execute a command-line
program and get its standard input and output connected to the flow-graph in GRC.
Executing csdr within these blocks helped me to analyze the behavior of my algorithms

and compare them against the built-in ones in GNU Radio.

44

Options Variable Variable Variable
ID: top_block 1D: samp_rate ID: samp _rate 2 ID: decimation
Generate Options: WX GUI | | Value: 240k Value: 75k Value: 3.2

Signal Source
Sample Rate: 240k

Waveform: Cosine Throttle A [Execute External Process :| WX GUI Scope Sink
Frequency: 4k M Sample Rate: 240k]_ Command line: csdr.r_ff 3.2 Title: Resample...gnal {csdr)
Amplitude: 1 Sample Rate: 75k

Offset: 0 L [Notebook: nb0, 0

Trigger Mode: Auto
Y Axis Label: Counts

WX GUI Scope Sink WX GUI FFT Sink
Title: Original signal Title: Resample...gnal (csdr)
» [Sample Rate: 240k Sample Rate: 75k
Notebook: nbl, 0 Baseband Freq: 0
Trigger Mode: Auto Y per Div: 10 dB
Y Axis Label: Counts 3 [Y Divs: 10
Ref Level (dB): D
WX GUI Slider WX GUI FFT Sink ::':'ss:: {_‘;‘;zi' 2
1D input_freq Tithe: Original signal Refresh Rate: 15
Default Value: 4k Sample Rate: 240k Notebook: nbd, 1
Minimum: 0 Baseband Freq: 0 Freq Set Varname: None
Maximum: 120k Y per Div: 10 dB
Converter: Float » [Y Diwvs: 10
Ref Level (dB): D

WX GUI Scope Sink
Title: Resample...(GNU Radio)

Ref Scale (p2p): 2
FFT Size: 1.024k

WX GUI Notebook

1D: nb2 Sample Rate: 75k
Tab Orientation: Top :::;e:;:ﬁzilf [Notebook: o2, 0
Labels: scope, fit T Trigger Mode: Auto

Freq Set Varname: None

Grid Position: 2,2, 1, 1 Y Axis Label: Counts

WX GUI Notebook WX GUI FFT Sink
1D: nbl Title: Resample...(GNU Radio)
Tab Orientation: Top —b-[Fractional Resampler Sample Rate: 75k
Labels: scope, fit Phase Shift: 0]— Baseband Freq: 0
Grid Position: 1, 1,1, 1 |: Resampling Ratio: 3.2 Y per Div: 10 dB

» [Y Divs: 10
Ref Level (dB): D
Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
Notebook: nb2, 1
Freq Set Varname: None

WX GUI Notebook
1D: nbd
Tab Orientation: Top
Labels: scope, fit
Grid Position: 1,2, 1, 1

Figure 22: GRC test bench for the function fractional_decimator_ff in libcsdr

In the test benches (just like the one on Figure 22), I have executed csdr with various
parameters, and viewed the output of my algorithms with different input signals. Due to
length restrictions on this thesis, I cannot write about every test taken during the

development, but I made a list of common requirements checked:

- the output signal had to be continuous in scope view (so no buffering errors

occurred),

- the output could not contain unwanted harmonics, or only at a sufficient level

compared to output of built-in algorithms in GNU Radio,

- output had to be at an expected level (for filters, output level had to match the

previously calculated filter envelope).

45

9 Channelization and filters

After general implementation concerns, we continue with the description of the
algorithms used. The software specification states that it should be capable of decoding
different signals to different clients from a wideband input. For this purpose, a digital
down-converter (DDC) is required before the demodulation stage, which is illustrated in
Figure 23. It shifts the desired signal to the center in the frequency domain, applies a
filter and also decreases the samples to the minimally required number for the

bandwidth of the chosen signal. [22]

& N BT ‘e |

1/Q input s—

Frequency Low-pass Decimation BPF, Demodulation,
translation filtering AGC, Resampling...
M | ‘_. | 4!,
_fs 0 fs _fs 0 fs 0 f2d
2 2 2 2
_fs 0 fs fd 0 fid
2 2 2

Figure 23: channelizing for SSB demodulation

In the following part, the algorithms required for channelization and filter processing

are described.

9.1 Frequency translation

If we have a complex signal, we can shift it by a frequency f in the frequency domain, if

we multiply it with (2).
/2™ t=cos(2n ft)+j-sin (2nft))

As we work on a sampled signal, we need a numerical controlled oscillator (NCO) to

generate discrete time sine and cosine signals. There are different algorithms for this:

- use sin and cos functions from libmath (their implementation is compiler and

architecture specific, and may not be the most optimal),

- use a lookup table store values of sin(x) and cos(x) functions in advance with

46

a given resolution, and easily look up later (higher accuracy implementation has

higher memory footprint),

- CORDIC (the most effective for FPGAs and ASIC, but takes many steps on a
CPU),

- use trigonometric addition formulas. [23]

The first and the last method was implemented (functions are summarized in Table 6).

The last algorithm consists of the following steps:

1. Take the sine and cosine of the phase step between samples (3).

d, =sin(Ag) 3

d . =cos(Ag)

2. Take the sine and cosine of the starting phase (4).
SSin[O]:SiH (CPO) (4)

Scosl 0]=C0s (@)

3. Apply the following trigonometric addition formulas to calculate sine and cosine step

by step (5).

scos[l]zcos(cpi_1+A @)=cos(¢, ,)-cos(Ag)—sin (¢, ,)-sin(Ag)=
=s_[i—1]d [i—1]-d

Ccos Ccos sin sin

(5)
sy li]=sin(¢,_ +Aq)=sin(g, ,)-cos(Ag)+cos(q, ,)-sin(Ag)=
=s, li—1]d_+s_ [i-1]d,

sin sin

It requires only a small number of operations so is expected to be faster than using
libmath, but there are two drawbacks when using this method:

- the floating point rounding errors increase with n,

- although it can be optimized with SIMD manually, the auto-vectorizer of GCC

cannot handle it.

The rounding errors can be overcome by re-initializing the s [0] and s_ [0] values

according to a calculated starting phase on every block of data. Tests showed that if we
reinitialize on every < 10000 samples, this error is sufficiently low, as shown in Figure

23.

47

error (dB)

-100

=120 - l

-140 ' L
] 10 20

30 40 S0

sarmiple nurnber (= 10000)

Figure 24: Error due to floating point rounding operations without re-
initialization on every block (calculated using shift_addition_cc_test).

I have made a quick measurement on the speed of the two algorithms implemented, and

it was revealed that calculation using addition formulas is about 4 times faster than

using libmath. 1 have made measurements with the time utility in Linux, running both

algorithms on the same number of input samples.

float shift _math cc
(complexf *input,
complexf* output,
int input_size,
float rate,
float starting_phase)

Frequency translation on complex signal.
NCO is implemented using the built-in
libmath.

The frequency shift rate is in proportion to
the sampling rate, in the range [-0.5, 0.5].

float shift_addition_cc
(complexf *input,
complexf* output,
int input_size,
shift_addition_data_t d,
float starting_phase)

Frequency translation on complex signal.
NCO is implemented using the trigonometric
addition formulas. It is faster, but less
accurate.

The parameter d should be initialized with
shift_addition_init.

The returned value has to be passed as the
starting_phase parameter, the next time the
function is called on the same input stream.

shift_addition_data_t
shift addition_init
(float rate)

Its return value should be passed to
shift_addition_cc, as parameter d.

Its only parameter is the frequency shift rate,
already explained at shift_math_cc.

void shift_ addition_ cc_test
(shift addition_data_t d)

Compares the two functions above,
calculating the error between shift_math_cc
and the less accurate shift_addition_cc. Its

48

output can be piped into GNU octave for
drawing a plot.

Table 6: Summary of frequency translation functions in libcsdr

9.2 Filter design

The purpose of filtering is to weigh specific signal components in the frequency
domain. For example, if we want to receive a continuous wave (CW) signal with an
amateur radio receiver, a good bandpass IF filter is required to suppress neighboring

signals — some of which may even be more powerful than the signal to be selected.

Regarding digital filters, they are usually classified as finite impulse response (FIR)
filters or infinite impulse response (IIR) filters. IIR filters have output feedback, so

unlike FIR filters, they cannot be optimized with SIMD.

FIR filters also have a special subtype called cascaded integrator-comb (CIC) filters,
that are more economic than standard FIR filters for doing decimation with a factor over

10.

Figure 25: Finite impulse response filter realization for
discrete time [23]

The output of a FIR filter of order N is a weighted sum of the last N items in the input

sequence. It can be expressed as (6), what is also illustrated on Figure 25.

N
y[n]=h[0]x[n]+h[1]x[n—1]+..+h[N]x[n—N]=>_ h[i]x[n—i] (6)
i=0

In contrast, an IIR filter can be expressed as (7).

49

y[n]:ﬁ(b[0]x[n]+b[1]x[n—1]+...+b[P]x[n—P]—a[l]y[n—l]—
P

Q
~af2]y[n=2]-..=alQly[n-Q])= 55| " blilx[n=il- alilyln-i]
i=0 i=1

()

In the equations above y[i] is the output signal, x[i] is the input signal, h[i] are the
FIR filter coefficients, N is the FIR filter order, b[i] and a[i] are the feed-forward and

feedback IIR filter coefficients with the corresponding orders of P and Q.

I have chosen to implement FIR filter design and processing functions, as they provided
good results enough and could be easily optimized. In my application, filtering is

required at several stages of the processing chain:

- A low-pass filter with real taps is used in the DDC and the resampler to remove

signal components above the Nyquist frequency before decimation.

- A band-pass filter with complex taps is used before the demodulator. (It can be

controlled over the web interface.)
- A de-emphasis filter is used after FM demodulation.
- A DC blocking filter is used after AM demodulation.
- Aloop filter is used in the AGC.

When the user changes the filter bandwidth on the web user interface, the band-pass
filter has to be redesigned on the fly, so I had to implement filter design algorithms in

my DSP library (as listed in Table 7).

There are multiple methods for designing FIR filters. The Parks—McClellan algorithm (a
variation of the Remez algorithm especially tailored for generating FIR filters) is quite
common, but the original implementation is very hard to follow. I have decided to use

the windowed FIR filter design method instead.
Convolving an input signal with a filter kernel given by the sinc function, we get a

perfect low-pass filter. The coefficients are given by (8), where f_. is the cutoff

frequency (relative to the sampling frequency).

hM:M (8)

i

50

However, as our filter is of finite length, we have to truncate this function, but it comes
with undesirable side effects in the frequency domain (ripple in the passband and bad

stopband attenuation).

20 T T T T

Magnitude (dB)

[} 0.2 0.4 0.& 0.8
Marmalized Frequency (% radisample)

-500

-1000

Phase (degrees)

-1300

2000 i i i i
[} 0.2 0.4 0.& 0.8
Marmalized Frequency (% radisample)

Figure 26: Sinc filter without windowing
(generated with firdes_lowpass_f)

To overcome this problem, we multiply our filter kernel with a so-called window
function. There are several window functions available: the Bartlett, raised cosine,
Hamming and Blackman windows are the most common. (The ‘rectangular window’ or
‘boxcar window’ are synonyms for a dummy window to indicate that no windowing

actually takes place.)
The formula for the Blackman window is (9).

i

4
7) ®)

w(i]=0.42—0.5cos 7’ +0.08 cos

The formula for the Hamming window is (10).

27i

w[i]=0.54—0.46 cos (10)

Comparing these two, the Blackman has better stopband attenuation and lower passband

51

ripple, but the Hamming has faster roll-off.

Magnitude (dB)

Phase (degrees)

Magnitude (dB)

Phase (degrees)

50

-1000

-2000

-3000

-4000

T T T T
0.2 0.4 0.6 e

Mormalized Frequency (=1 radisample)

Figure 27: Sinc filter with Blackman window
(generated with firdes_lowpass_f)

50 T T T T
4]
=50
=100
150 ; ; ; ;
4] 0.2 0.4 0.6 08
Meormalized Frequency (xn rad/sample)
o T T T T
SO0 e T R T IR PN T T SATTETER PP RIRTIRIORY SERTTERTITTSRRIOTIE,
IO e .. .
S1S00 b R P P TP PP
LEOO0 e SRR ... _
_2500 L | L L
0.2 0.4 0.6 0.8

Mormalized Frequency (% rad/sample)

Figure 28: Sinc filter with Hamming window
(generated with firdes_lowpass_f)

52

Although windowing helps to decrease effects of truncation, it should be noted that the
longer the filter kernel is, the faster the roll-off is, and the transition bandwidth is also
lower. The length of the filter for a given relative transition bandwidth (in proportion to

the sampling rate) can be approximated as (11).

Ma—2t (1)

transition

The algorithm needed to design a bandpass FIR filter with complex coefficients can be

easily derived from the low-pass filter design code. The filter we want to design is

expected to have a lower cutoff frequency f, ~ and an upper cutoff frequency

f highcut * Both can be positive or negative, but (12) should be satisfied.

f sampli f i
pling sampling
2 <f lowcut<f highcut 2 (12)

First we design a low-pass filter with real taps, with a cutoff frequency of

f o= fhighcut_ frowey » then we shift the passband by multiplying the taps with (13),

where i is sample index.

—j2mi(f /2
o i (f o /2) (13)

If we apply a FIR filter with real taps on a complex signal, the passband is always
mirrored to DC, but a filter with complex taps does not have this restriction on the
passband. Thus only a filter with complex coefficients can be used for SSB

demodulation of its own (to suppress negative frequency components, and pass

everything above DC).

void firdes_lowpass_f Low-pass FIR filter design function for
(float *output, real signals, using the windowed FIR filter
int length, design algorithm, with a given cutoff _rate
float cutoff rate, (in proportion to the sampling rate), filter
window_t window) length, and window function.

void firdes_bandpass_c Band-pass FIR filter design function for
(complexf *output, complex signals, with a given lowcut and
int length, highcut ratio (in proportion to the
float lowcut, sampling rate), filter length, and window
float highcut, function.
window_t window)

53

The ratios defining the passband should be
in the [-0.5, 0.5] interval.

int firdes_ filter_ len Returns the required number of taps for a
(float transition_bw) FIR filter to accomplish a given

transition_bw transition bandwidth (in

proportion to the sampling rate).

window_t Returns a window kernel identifier from a
firdes_get_window_from_string string (e.g. user input).
(char* input)

char* Returns the name of the window kernel as

firdes_get_string from window | string from a window kernel identifier.
(window_t window)

float Returns the pointer to a window function

(*firdes_get_window_kernel from a window identifier.

window_t window float . .
(-)) All window functions take only one

parameter: rate, which should be in the
interval [0, 1].

float firdes_wkernel_blackman Function to calculate Blackman window

(float rate) coefficients.

float firdes_wkernel_ hamming Function to calculate Hamming window
(float rate) coefficients.

float firdes_wkernel boxcar A dummy window function that always
(float rate) returns 1.0, so using it has no effect.

Table 7: Summary of filter design functions in libcsdr

9.3 Resampling

Changing the sample rate of the signal is required at multiple processing stages:
- during channelization,
- to match the sample rate of the demodulator sound card output sample rate.

After the frequency translation, we have our channel to select centered in the frequency
domain. However, the signal still has much higher bandwidth than required, also

containing other channels that we want to suppress.

We cannot just skip samples to decrease the sampling rate, as it would effect in
unwanted aliasing, so we first have to apply a low-pass filter to the signal, to remove

high frequency components that would overlap in the spectrum.

54

We can also make these two steps at once. If we simply calculate only one out of M
output samples, where M is the decimation factor, we do less calculations, and have a

filtered, decimated output signal.

inputsamples [T T [[T [[T T T T TTTTTTTTT]
filtertaps [[[[[[][]
LITTTTTT]
[TTTTTT]
[TTTTTT]
[TTTT

output samples [T]

Figure 29: a simplified diagram to show how output samples
are generated when using a FIR filter with 7 taps, and a
decimation factor of 5.
The decimating FIR filter is implemented as the fir_decimate_cc function in the
library. The cutoff frequency of the filter should be (14) to avoid aliasing effects.

I samplin,
— pling
f

cutoff = 24 (14)

is the cut-off frequency of the filter, f is the sampling frequency of the

f cutoff

sampling

input signal, and d is the decimation factor.

It is also important to note that here we use a FIR filter with real taps on a complex
signal, by applying it to the vector made up of the real parts of the complex values, and

also the vector of imaginary parts. The result is a complex signal with all frequencies

suppressed except the [—f range, which means that the passband is

cutoff ’ f cutoff]

centered around DC.

When some conditions are met, using the FFT and the overlap-add method for FIR
filtering gives the same result faster than calculating the FIR filter formula directly. (I
cover this method in section 9.4.) If we do not apply decimation, this method gets faster
than the other around 10-64 filter taps [25] [26], depending on the exact
implementation. The number of computational steps for the two methods can be
approximated as on (15).

Spr=N-T

SFFT:(N+T)-[2log2(N+T)+1}

(15)

55

N is the number of output samples and T is the number of filter taps.

However, if M-ary decimation is taken into consideration, the FFT method takes the
same amount of time to calculate, but the number of steps required for the FIR method

decreases in proportion to the decimation factor (16).

N-T

SFIRZV (16)

The real speed is also dependent on implementation and optimization, so the choice
between the two algorithms should be based on real-world tests. In my application, I
have chosen to implement the first decimation stage using direct FIR filtering, because
it is likely to have computational advantage at higher decimation ratios. However, a test-

based automatic choice may be added later to further improve performance.

There is another stage of decimation where we want to match the demodulated signal
with the sample rate of the sound card (a fixed rate of 44100 Hz in this application).
This requires a non-integer decimation rate, which can be achieved by linearly
interpolating the right output samples. My library contains a fractional decimator that
uses this principle for real signals. GNU Radio has the same functionality in the
fractional_resampler_{f block, but it internally uses an 8-tap Minimum Mean Squared
Error interpolator instead of linear interpolation, so it provides better performance in
terms of spurious signals. Figure 30 shows a comparison between the spectrum of the

resampled output of GNU Radio and csdr.

56

-10
20
-30
-40
-50
-60

Amplitude {dB)

-70
-80
-0
-100

-10
-20
-30
-40
-50
-60

Amplitude (dB)

-70
-80
-90
-100

Resampled signal (csdr) FFT

10 15 20 25 30 35
Frequency (kHz)

Resampled signal (GNU Radio) FFT

| | |

10 15 20 25 30 35
Frequency (kHz)

Figure 30: spectrum of 13 kHz sine wave resampled from

240 kHz to 75 kHz sample rate (with a decimation ratio of 3.2), using the
Fractional Resampler block in GNU Radio and fractional_decimator_ff

in libcsdr

I have also successfully implemented a resampler for rational resampling ratios. It first
interpolates the signal by an integer factor, and then decimates it by another integer
factor. As interpolation and decimation both require anti-aliasing filters, the one having
the lower relative cutoff frequency is used. Interpolation alone would stuff the signal
with zeros, so to save on computations, we do not calculate the multiplication result for
the filter taps corresponding to zero taps. Decimation also saves us from calculating
some output samples. Figure 31 shows a comparison between GNU Radio and csdr
output for the rational resampler algorithm, which could also be used for resampling the
audio signal to the rate of the sound card in OpenWebRX, but the default is the

fractional decimator. Table 8 lists resampling functions in libcsdr-.

57

Resampled signal (csdr) FFT

-10
-20
~ -30
-]
2 40
L]
T o0
£
o -60
E
< 70
-80
ﬂ | ﬂ
-100
0 5 10 15 20 25 30 35 40
Frequency (kHz)
Resampled signal (GNU Radio) FFT
0
-10
-20
- -30
-]
2 40
1]
T S0
£
o -60
£
< 70
-80
-90 ﬂ
-100

0 5 10 15 20 25 30 35 40
Frequency (kHz)

Figure 31: spectrum of 4 kHz sine wave resampled from
32 kHz to 80 kHz sample rate (with an interpolation factor of 5 and a
decimation factor of 2), using the Rational Resampler block in GNU
Radio and rational_resampler_f{f in libcsdr

int fir_ decimate_cc Decimates the input signal by an integer
(complexf *input, decimation factor, using an anti-aliasing
complexf *output, FIR filter of taps_length number of filter
int input_size, taps.

int decimation,
float *taps,
int taps_length)

fractional_decimator_ff t Decimates the input signal by the
fractional decimator ff fractional decimation rate, using an anti-
(float* input, aliasing FIR filter of taps_length number
float* output, of filter taps.

int input_size,

float rate, The returned value has to be passed as

58

float *taps, parameter d the next time the function is

int taps_length, called on the same input stream.
fractional decimator ff t d)

rational_resampler_ ff_t Resamples the input signal by integer
rational resampler ff interpolation and decimation factors.
(float *input,
float *output,
int input_size,

The returned value is a struct that
contains the output_size, and the
int interpolation, last_taps_delay, that §hould be pasged as
int decimation, parameter the next time the function is
float *taps, called on the same input stream.

int taps_length,

int last_taps_delay)

Table 8: Summary of resampling functions in libcsdr

9.4 Band-pass filter using FFT

After the first decimation stage, a band-pass filter is used. The passband of this filter can
be set on the web GUI. This filter is also responsible for image rejection while
performing SSB demodulation. Its transition bandwidth is low (300 Hz by default), but
it also means that the filter kernel is long: it is also dependent on the input sample rate
and the DDC decimation factor, but around 6-700 taps. As I have already noted, if no
further decimation is taken into consideration, FIR filters above 64 taps are expected to
be processed faster using FFT and the overlap-add method instead of calculating the

FIR filter result directly.
This method is detailed in the literature [26], but a brief explanation is given below:
1. We calculate the frequency response of the filter.

1.1. We choose a power of two for the array size, high enough to hold the filter

kernel, and pad the kernel with zeros to fill the array.
1.2. We apply FFT on the array and store the result.
2. We calculate the frequency response of an input buffer.

2.1. The array size should be the same as the one that holds the frequency

response of the kernel.

2.2. We fill the following number of input samples into the array (and pad the

remaining with zeros): FFT size—filter kernel size+1

59

2.3. We calculate the frequency response of the input buffer.

3. We multiply the elements of the frequency response of the filter and the input

buffer with each other one by one, and store the result.
4. We apply inverse FFT on the result.

5. We add the array of the overlapping samples (of filter kernel size—1) that we
stored last time, to the beginning of the result. This will be the output of the

filter.

6. We store the last (filter kernel size —1) samples to the array of the overlapping

samples.

Table 9 contains the function corresponding to this operation in libcsdr.

void apply_fir_ fft_cc Function that performs FIR filtering with
(FFT_PLAN_T* plan, FFT and the overlap-add method.
FFT_PLAN_T* plan_inverse,
complexf* taps_£fft,
complexf* last_overlap,
int overlap_size)

Table 9: apply_fir_fft_cc in libcsdr

10 Demodulation

With libcsdr, we can demodulate all the popular modulations used for transmitting voice
on amateur radio bands, as well as continuous wave (CW) transmission that carry Morse

code.

Modulation can be defined as a method required for all kinds of radio transmissions: by
varying the parameters of a periodic signal called carrier wave, we convey the original

signal into another one that can be physically transmitted [27].

We can classify modulations to amplitude and angle modulations, by the two parameters

of the sine wave that can be changed in order to modulate a sinusoidal carrier signal.
s(t):A(t)Cos[2nfc+cp(t)] (17)
A(t) is the amplitude, ¢(t) is the phase, and f . is the carrier frequency.

In the sections below, concepts of double-sideband amplitude modulation (AM-DSB),

frequency modulation (FM, which is a sub-case of angle modulations), and single-

60

sideband suppressed carrier amplitude modulation (AM-SSB/SC) are presented, along

with the explanation of the demodulation concepts and algorithms used in libcsdr.
In the equations below, s(t) denotes the modulated signal, and x (t) denotes the

modulating signal (which is to be transmitted over the radio channel, to be reproduced

at the receiver). In software implementation, we assume that x (t) is within the range

[-1; 1].

10.1 Amplitude modulated signals

Mathematical representation of a real-valued AM signal is shown on (18), with graphs
on a sine-modulated signal in time-domain (Figure 32) and frequency domain (Figure

33).

1+k,x, (t)
sAM(t)ZAC > Cos(2nfct) (18)
Scope Plot [ET g
2
1.5
1
1 |
0.5
£ o
[=]
w
-0.5
-1
-1.5
-2
0.8 1 1.2 1.4 1.6 1.8 2 2.2
Time (ms)

Figure 32: AM signal in time domain (modulated by a pure sine wave)

61

FFT Plot T

-10
-20
. -30
m
2 a0
2
= 50
]
2 50
g
70
-80
-90
-100
0 10 20 30 40 50 60 70 80 90

Frequency (kHz)
Figure 33: AM signal in frequency domain
We have to note that the modulating signal must be above zero, so we shift the signal
level accordingly in the expression. A, represents the amplitude of the carrier signal,
which is also the maximum amplitude for the modulated signal. f. is the carrier
frequency. k, is the modulation index: it should not exceed 100% because it would

prevent the the demodulator from recovering the original amplitude envelope and result

in a distorted signal on the receiver end.

The signal is spectrally centered at f ., while the modulating signal appears just above
and just below f . (this can also be proven), these are called sidebands — hence a more

accurate name for this type of modulation is double-sideband amplitude modulation

(AM-DSB).

10.2 AM demodulation techniques

While performing AM demodulation, we want to recover the envelope of the amplitude
of the modulated signal. In some traditional receivers, AM demodulation is done by
rectifying the modulated signal (using semiconductors), and as it is a nonlinear
operation that introduces harmonics, we low-pass filter the signal before feeding it to

the speakers.

In the AM receiver block in our SDR receiver system, we have a complex AM signal

with the carrier frequency f . already centered at zero after downconversion (19).

62

1+k -x (t) _in
5. (t)=A d__m)cos(2nf t)~ P
put c) c
introduced by
downconverter
., 1+kd-xm(t) eJ.2T[fCt+e—J~2J'CfCt —sz'EfCt_ 19
=A, > 5 = (19)
removed
by LPF
_ 1+kd'xm(t) 1+e_j-4ﬂfct
=A
¢ 2 2

If we have the downconverted signal, to get the amplitude of every complex sample, we
apply (20), in which I(t) and Q(t) are given by (21).

1-l-XTm(t):Magnitude(s—(t))Z\/m (20)

input

I(t)=R

S)] QUE)=T (5 ()] (1)

While seeking for an efficient implementation by software, we can run into the problem
that calculating the square-root on computers is a difficult and slow operation. Modern
CPU-s with SSE instruction set do support the square root operation (e.g. via compiler
optimizations or directly using intrinsics like _mm_sqrt_ps), but there is no support for
it in ARM embedded systems with NEON. To overcome the problem, there is a

magnitude estimator formula (22), and square-root is not required to calculate it.

Q(t)l (22)

Q(t)][+p-minl|I(t)

3 b

Magnitude(%(t))moc-max 1 (¢)

This function has two parameters, oo and f3 that can be optimized for the smallest error

possible, however, tables of their typical optimal values already exist. [28]

It should be noted that the CORDIC algorithm can also be used for AM demodulation.

63

void amdemod_cf AM demodulator using sqgrt in math.h
(complexf* input,
float *output,
int input_size)

void amdemod estimator_ cf | AM demodulator using the magnitude estimator
complexf* input, formula, with a given alpha and beta parameter.
float *output,
int input_size,
float alpha,
float beta)

Table 10: Summary of AM demodulator functions in libcsdr

10.3 DC blocking filter

AM demodulation is not finished at finding the signal magnitude, we also have to
remove the DC component from the resulting signal, even if the input signal level
changes. There are multiple techniques for DC blocking in DSP, and I have

implemented two of them.

A simple IIR filter can be created using a differentiator (having a zero at z=1 on the
pole-zero plot) and a single-pole filter to compensate the drooping frequency response
of the differentiator (by placing a pole near the zero of the differentiator, in the 0<z<1

interval).

The filter with the equation (23) has a transfer function (24), which is also shown on

Figure 34 and 35.

ylnl=p-y[n—1]+x[n]-x[n—-1] (23)
1—pz_1

The parameter p determines the fall-off of the transfer characteristics. The closer it is to

1, the sharper is the filter envelope.

64

1
Ln

Magnrtuda (dB)
o
o

100 T T T T
T i 1
o !
a B
i :
= T = i N U U USSR AU USRI
a B
- :
PTE SR R TR TP R TP TR PP TP ERERPPPE
Wi M
a :
£ H 4
o :
i

0.4 0.6 0.8
Mormalized Frequency (xn radisampla)

Figure 34: Transfer characteristic of DC blocking IIR filter with p=0.9

1) ' ! !
—. OF . - : :
% 1 [r TR AN e NIRRT
_%l - | S LT TP F T T Decmsecniiiiiae P R RETTTEe
< 1S R e
E. -3 : E : :
et | : : : : .
B 5 : : : : 1
5 : i ; i
0 0.2 0.4 0.6 0.8
Mormalized Frequency (< radisample)
&0 T T T T
T T LT TTT. LTI R ST RN ST §
a
L 40]
=
a
E --- -
o
wi -t
T
=
R o T A Y - S S i

0.2 0.4 0.6 0.8
Mormalized Frequency (xmn radisarmpla)

Figure 35: Transfer characteristic of DC blocking IIR filter with p=0.99

DC blocking can also be achieved by creating a FIR filter, or by applying moving
average to the signal, and subtract the average from the samples. The latter is
computationally efficient, can be paralleled, and is also widely used [29]. I have
implemented this algorithm it with a modification: I calculate average of samples in
blocks, and linearly change the subtracted value from one block to another. The larger

blocks we have, the change in the this ratio will be smoother. This algorithm can be

65

easily vectorized by the compiler.

To test the DC blocking filter implementations, I made a GNU Radio flow graph that
adds a DC component to white noise (as shown on Figure 36), and then removes it with
my algorithms (as on Figure 37 and 38). Table 11 contains a list of DC blocking

functions in libcsdr.

FFT Plot T

-10
-20
-30
-40
-50
-60

Amplitude (dB)

-70
-80
-90

-100
0 20 40 60 80 100 120

Frequency (kHz)

Figure 36: Original signal with DC component

FFT Plot T

-10
-20
-30
-40
-50
-60

Amplitude (dB)

-70
-80
90

-100
0 20 40 60 80 100 120

Frequency (kHz)

Figure 37: Signal with DC component removed with IIR filter
(dcblock_ff)

66

FFT Plot FFT
0
-10
20
~ -30
g
< 40
<
3 -50
£
2 .60
E
< 70
-80
-90
-100
0 20 40 60 80 100 120

Frequency (kHz)

Figure 38: Signal with DC component removed with averaging
(fastdcblock_ff)

dcblock_preserve_t dcblock_ ff
(float* input,
float* output,
int input_size,
float a,

dcblock_preserve_t preserved)

DC blocking filter using a single-pole
IR filter.

The returned value should be passed as
parameter preserved the next time the
function is called on the same input
stream.

float fastdcblock ff
(float* input,
float* output,
int input_size,
float last_dc_level)

DC blocking filter using averaging.

The returned value should be passed as
parameter last_dc_level the next time
the function is called on the same input
stream.

Table 11: Summary of DC blocking filter functions in libcsdr

10.4 Single-sideband signals (SSB)

Having a modulating signal with a bandwidth of B, the bandwidth of the AM signal is

2B, which is inefficient use of both the available spectrum and the dynamic range of the

RF power amplifier as of the relevant information is transmitted twice, and additionally,

the carrier is transmitted. This problem gets solved by removing the carrier and one of

the two sidebands at the transmitter side. The result is called single-sideband amplitude

modulation with suppressed carrier (AM-SSB/SC), and based on the remaining

sideband, can be upper sideband (USB) or lower sideband (LSB) transmission. Figure

67

39 shows how these modulations look like in the frequency spectrum.

amplitude
I~ 1 [~ frequency
AM-DSB LSB usB

Figure 39: different amplitude modulations

However, while SSB signals have a lot of desirable attributes, they are much harder to
demodulate. In traditional receivers, SSB signals are demodulated with a product
detector. Filtering the signal at the IF stages is even more important to provide sufficient

image rejection.

Also a drawback of SSB that the receiver cannot reproduce the original carrier present
at the transmitter (as it is removed before transmission), so it will always be slightly
detuned, which results in a frequency shift compared to the original signal. While still
eligible for speech, it is not suitable for transmitting music, and along with the advanced
receiver structure it requires, this is why AM-DSB is still widely used for broadcasting

on HF.

In SDR, multiple solutions are available for demodulating SSB. All work by removing
all the negative or positive frequencies from the complex input signal, thus rejecting the

other sideband.

The Hartley method for SSB demodulation (on Figure 40) uses a so-called Hilbert-

transformer which shifts the phase on all frequencies by 90°.

Downconverted
complex input
signal

o §
=

transform

Figure 40: block diagram for the
Hartley method for SSB
demodulation

The Hilbert transformer is easy to implement for DSP as a FIR filter, but hard to realize

by analog circuits.

68

The Weaver method (on Figure 41) can also be used for SSB demodulation. It is

outlined in the figure below:

0° 0°

@ ej21‘t(fc-fd) @ ejand <+:+ Audio
An?na 90° '90" 0'

Y B X

A M iDA —h

0 fe

Figure 41: block diagram for the Weaver method for SSB demodulation

If we replace the separate low-pass filters and the second mixing stage by one single
filter working on the complex signal, we can reuse the firdes_bandpass_c and the
apply_fir_fft_cc routines already implemented in the library. As this way I did not have
to write functions for designing a special FIR filter for Hilbert transform, I chose this

method as the base of my implementation.

— fTS
X | . Audio
~Z ‘R
Downconverted <
cnmp_lex input FIR BPF Take
siges) Q | (complex taps) real part

Figure 42: block diagram of SSB
demodulation in OpenWebRX

As apply_fir_fft_cc uses a FIR filter with complex taps, we can use it to emphasize one
sideband and suppress another. If our complex signal contains only positive frequencies
(for USB) or only negative frequencies (for LSB), if we take the projection of the

complex signal to any axis on the complex plane, we get a real signal that still contains

69

the same frequency components. This demodulation procedure is shown on Figure 42.

One of the most important parameters of an SSB receiver is the rejection of the other
sideband. Figure 43 shows the frequency response of the default complex band-pass
filter used for USB demodulation in OpenWebRX. (The sweep was generated

automatically with a python script.) It is below -60 dB everywhere under DC.

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

-20

-40

-60

-80

relative power [dB]

-100
-120

-140
frequency [kHZz]

Figure 43: measured response of the band-pass filter for SSB demodulation
in OpenWebRX

In most analog receivers, CW reception is just USB reception with a separate band-pass
IF filter (that has much lower bandwidth). In OpenWebRX, we also use this approach
for CW detection: we simply set different filter settings when the CW demodulator is

selected. In this case, passband is less than 200 Hz.

10.5 Frequency modulated signals

Frequency is one of the parameters of a pure sine wave that can be changed in order to
modulate it with a signal. An FM modulated real signal can be represented as (25),

where (26) also applies.
t

Sy (t)=A_cos 2 [f(v)dv (25)
0

70

f(t)=f.+fax,, () (26)
f o is the carrier frequency, and [, is the frequency deviation.

In our application we work with a complex signal having the FM signal centered at DC
after downconversion. It means that we have (27) at the input of our FM demodulator
block.

(j'ZJ'Ej‘ f(t)dt)

(27)

We want to determine the derivative of the phase, (28). The simplest approach is to
subtract the phases of the actual and the previous complex samples.

d s
v (0)= 8) 28)

In the memory our complex samples are in rectangular notation, and to determine their
phase, we have to use the arctangent function. To get the real phase between 0° and
360°, we have to correct the angle based on the signs of the real and imaginary parts of

the input, but the built-in function atan2 in math.h does this for us (29) (30).

1[1]=R (s, [1]) (29)
QL= 3 (5 L1])

Xm[i]:ataDZ(I[i],Q[i])—atin2(I[i—l],Q[i—l]) 30)

To respect the Nyquist criterion, the phase cannot change more than s from one
complex sample to another, hence the division with s to limit the signal to the range

[-1; 1].

The drawback of this method is the inability to be simply accelerated with SIMD as
neither SSE, nor NEON does contain a dedicated instruction for arctan. To overcome
this situation, there is another algorithm called quadri-correlator [30]. It is based on the

identity (31).

dQ(t) di (t
¢ arctan(Q(t) lzl(t). o Q)= o
dt I(t) (t)+Q%(¢)

71

By interpreting this formula in the digital domain, and also simplifying it, we get (32).

« j=dolil_Qlilrli-1}-11iQli-1] 1)
mo Qlil+rfi)

Unless we store the values for the arctangent in a lookup table in memory, the formula
for the quadri-correlator is more computationally efficient to calculate than the previous
method for FM demodulation, and is also more simple to implement. Moreover, the
computation can be accelerated with SIMD instructions. Table 12 lists FM

demodulation functions in libcsdr.

float fmdemod atan_cf FM demodulator using the atan2
(complexf* input, function in math.h to calculate the
float *output, phase of the complex samples.

int input_size,

float last phase) The returned value (the phase of the

last sample) has to be passed as
parameter last_phase the next time the
function is called on the same input

stream.
complexf fmdemod quadri_cf FM demodulator using the quadri-
(complexf* input, correlator method.

float* output,

int input_size,

float *temp,

complexf last_sample)

It requires an additional temporary
buffer, temp (with a size of input_size)
for its internal calculations.

The returned value (the last sample)
has to be passed as parameter
last_sample the next time the function
is called on the same input stream.

complexf fmdemod_quadri_novect_cf |FM demodulator using the quadri-
(complexf* input, correlator method.
float* output,
int input_size,
complexf last_sample)

It is less optimized but easier to
understand.

Table 12: Summary of FM demodulation functions in libcsdr

10.6 De-emphasis

The noise power of the demodulated FM signal increases by the square of the
frequency. [31] In practice, the high-frequency components of the modulating signal

usually turn out to have lower amplitude, so the signal-to-noise ratio (SNR) would get

72

significantly lower for the higher frequencies. To compensate this effect, a so-called pre-
emphasis filter is applied at the modulator input, which emphasizes higher frequencies,
thus improving the SNR. It follows that we have to use a de-emphasis filter at the

receiver to return the original signal.

Different parameters apply to different FM systems. FM broadcast receivers contain a
single-pole de-emphasis filter, with a time constant of 50 ps in Europe and 75 ps in
USA (and most countries use one of these two values). This behavior can be effectively
modeled in software with a single-pole IIR filter, and although WFM (wideband FM) is
almost never used on amateur radio bands, and a WFM demodulator is not included in
the web interface as well, I have implemented this filter for the completeness of the DSP
library. It is indeed used by the command-line tool csdr-fm, which is a testing tool for

libcsdr for demodulating broadcast FM stations.

On the other side, the NFM (narrowband FM, with a current typical channel spacing of
12.5 kHz) is widely used in the amateur radio bands, but requires a different approach,
as it is mainly used for transmitting speech. In the demodulated signal, only frequencies
between 400 Hz and 4 kHz carry valuable information, but our filter characteristics
should also be rolling off by 20 dB/decade in the passband to apply de-emphasis. In
conclusion, we have to suppress frequencies below 400 Hz and above 4 kHz. Below 400
Hz, we optionally find the signal of the Continuous Tone-Coded Squelch System
(CTCSS), which might even disturb the listener.

For this purpose, I have decided to use a filter bank that contains fixed arrays of FIR
filter coefficients for specific sample rates. My C implementation in predefined.h
contains three filters for sample rates of 48000 Hz, 44100 Hz and 8000 Hz, along with
the code snippet to design new ones in GNU octave (Figure 44 shows the frequency
response for one of them). My own filter design functions only support creating a subset
of FIR filters (with low-pass and band-pass characteristics), but in this application a
given custom amplitude envelope should be approximated. GNU octave has a built-in
method firls for this purpose, however, the returned array should be normalized to have

a gain of 0 dB around 400 Hz.

73

20 ! ! T T

=20

-40

-&0

-80

=100 ; ; ' '
170 i i i i

4] 0.2 0.4 0.5 0.8

Mormalized Freguency (X1 rad/sample)

Magnitude (dB)

00

=500
-1000
-1300
-2000
-2500

-3000
Q

Phase (degrees)

0.2 0.4 0.5 0.8
Mormalized Freguency (X1 rad/sample)

Figure 44: transmission of FIR filter modeling NFM communications equipment
behavior including de-emphasis characteristics, running at a sample rate of 48000 sps

float deemphasis_wfm_ff De-emphasis filter to be applied after
(float* input, FM demodulation on WFM signals.
float* output,

int input_size, It is realized using a single-pole IIR

filter. The parameter tau is the time

float tau, .

int sample rate, constant for the filter.

float last_output) The returned value has to be passed as
the last_output parameter, the next
time the function is called on the same
input stream.

int deemphasis_nfm_ ff De-emphasis filter to be applied after
(float* input, FM demodulation on NFM signals.

float* output,

int input_size,
int sample_rate) Return value is the number of output
samples, which also equals to the
number of input samples processed.
The remaining input samples should be
inserted at the beginning of the next
input.

It uses a fixed FIR filter bank.

Table 13: Summary of FM de-emphasis functions in libcsdr

74

11 Other DSP functions

In this part, some miscellaneous functions are explained, that do not fit in the previous

sections.

11.1 Automatic gain control

In traditional receivers automatic gain control (AGC) is applied at an IF stage of the
receiver, to keep the signal amplitude close to a given level before feeding to to the
demodulator. In DSP we do not have non-linearities caused by analog components, but
do have the effects of quantization, which are less problematic when dealing with

floating point data. It means that we can put our AGC after the demodulator.

A digital AGC of course should model how an analog AGC works (Figure 45 illustrates
this). In my implementation (agc_ff function in libcsdr, functions listed in Table 14) the
AGC continuously calculates the gain that would be required to keep the signal at a
given constant reference level. If the signal level increases or decreases, the AGC
changes the gain, with an exponential transient. The attack_rate and the decay_rate are
two different constants that control the AGC transient lengths in case of signal level
increase or decrease, and attack_rate should be higher than decay_rate as if the signal
level increases, we have to decrease the gain very fast to avoid clipping (which would
occur at the conversion from floating point to integer before sending the output to the

sound card).

We also want our AGC to keep the gain unchanged when the signal level gets radically
changed only temporarily, for a short period. The purpose of attack_wait_time is to
ignore sudden bursts of wideband noise appearing on the input, while the hang_time

helps to ignore sudden, temporary dips in the signal level. [32]

75

gain level remains unchanged
due to attack_wait_time

gain level remains unchanged
due to hang_time

Input signal level

time

AGC gain

. time
transient length
set by decay rate

transient length
set by attack _rate

Figure 45: AGC operation

I have also implemented a simpler algorithm (fastagc_ff in libcsdr), which uses triple
buffering and adjusts the gain linearly taking the highest amplitude peak (in all the three
buffers) into consideration. Its undesirable behavior on short bursts make it insufficient
to use it on SSB and AM, but it can be used for keeping the signal level constant after

the quadri-correlator FM demodulator output.

float agc_f£ff Automatic Gain Control function. It models
(float* input, analog AGC circuits.
float* output,
int input_size,
float reference,
float attack_rate,

The parameters attack_rate, decay_rate,
attack_wait_time, hang_time were already
explained in this section.

float decay_rate, The reference level is given by the parameter
float max_gain, reference. The gain will not be increased over
short hang_time, max_gain; gain_filter_alpha is the parameter

short attack_wait_time, |of the IIR loop filter for the AGC.
float gain_filter_ alpha,
float last_gain) The returned value has to be passed as the

last_gain parameter, the next time the
function is called on the same input stream.

void fastagc_f£ff Automatic Gain Control function. It delays
(fastagc_ff_t* input, the output by two buffers and looks ahead
float* output) when calculating the maximum amplitude

peak. Its output will strictly be in the range

76

[-1, 1].

The struct input contains the last three input
buffers, the buffer size and the reference level.
Calling the function swaps the buffers so that
data can be filled into input.buffer_input the
next time.

Table 14: Summary of AGC functions in libcsdr

11.2 Fast Fourier Transform

The Fast Fourier Transform has multiple uses in libcsdr:
- it makes spectrum display possible,
- itis used for processing band-pass FIR filters.

Indeed, there are highly optimized Fast Fourier Transform libraries available, so it is not
worth implementing FFT manually. A short list of libraries that were considered to be

used in the project:
- FFTW (supports SSE and NEON, available for free under GPL license),

- FFTS (supports SSE and NEON, free under BSD license, but does not build on
x86 32-bit machines)

- cuFFT (official GPU-accelerated FFT implementation for nVIDIA CUDA),

- there is also a GPU-accelerated FFT implementation for the Broadcom SoC

used in the Raspberry Pi single board computer.

In libcsdr 1 have implemented FFT using wrapper functions (listed in Table 15).
Currently the only wrapper available is for FFTW, however, adding other FFT libraries
should be easy by design. I have several reasons why I have chosen FFTW as the
default, as it supports the widest range of hardware: it runs on older machines with x86
32-bit architecture, even if they do not have any SIMD capability in the CPU. However,

its computational capability can be exceeded by the others if using a GPU for the task.

The command-line tool csdr has a feature to benchmark the FFT library libcsdr was

linked against (as shown on Figure 46).

77

pcfl@ssd-mint
pcfl@ssd-mint
fft benchmark:
fft benchmark:
fft_benchmark:
pcfl@ssd-mint
pcfl@ssd-mint
fft benchmark:
fft benchmark:
fft_benchmark:

FFT library used: fftw3
initializing...

initializing...

csdr fft_benchmark 1024 1908008

done in ©.88111251 seconds.
1000000 transforms of 1024 processed im 3.81763 seconds, 3.81763e-06 seconds each.

csdr fft benchmark 1024 1806008 --benchmark
FFT library used: fftw3

done in ©.8566136 seconds.
1000000 transforms of 1024 processed im 3.15937 seconds, 3.15937e-06 seconds each.

Figure 46: sample output of fft_benchmark with libcsdr
on an Intel Core i7 M620 CPU clocked at 2.67 GHz

To calculate FFT, one first has to generate an FFT plan (which is internally specific to

the given FFT library), and then call fft_execute on the plan.

FFT_PLAN_T* make_fft_ c2c
(int size,
complexf* input,
complexf* output,
int forward,
int benchmark)

It generates a plan for applying the Discrete
Fourier Transformation (DFT) on an array of
complex samples, for transforming the input array
from time domain to the frequency domain.

The size of the input and output array should be a
power of two.

If forward is false, the plan is created for an
inverse transformation.

If benchmark is true, the plan is optimized, but it
takes more time to create.

FFT PLAN_T* make fft r2c
(int size,
float* input,
complexf* output,
int benchmark)

It creates a plan for transforming an array of real
samples in the time domain to frequency domain.

FFT_PLAN_T* make_fft_ c2r
(int size,
complexf* input,
float* output,
int benchmark)

It creates a plan for inverse transforming an array
of complex samples in the frequency domain to
real samples in the time domain.

fft_malloc
(size_t size);

void*

Some FFT libraries require the input and output
buffers to be allocated in a special way (SIMD
operations usually need aligned memory access).
This function calls the special memory allocation
function in the specific FFT library.

void fft_free(void* ptr);

This function is for deallocating the memory
allocated with fft_malloc.

void fft_execute
(FFT_PLAN_T* plan)

It executes the given FFT plan. The calculation is
performed and the output buffer (already given
while creating the plan), is filled on calling this

78

function.

void fft_destroy
(FFT_PLAN_T* plan)

It frees the FFT plan, deallocating any resources.

void apply_window_c
(complexf* input,
complexf* output,
int size,
window_t window)

This function is for applying a window function on
the input signal before calculating its DFT (for
spectrum display).

void logpower_ cf
(complexf* input,
float* output,
int size,
float add_db)

This function is to convert the complex output of
the DFT to floating point power values on a
logarithmic dB scale, for drawing a spectrum
display.

The parameter add_db is added to the output
values, thus shifting the spectrum on the y axis.

Table 15: Summary of FFT functions in libcsdr

79

12 Conclusion and potential further improvements

The World Wide Web has been undergoing continuous revolution in the last years.
Nowadays web technologies are even more mature, and the web has become a platform

that can easily handle the complexity of a Software Defined Radio receiver GUI.

A multi-user SDR receiver is special from the aspect that it needs much more computing
resources than if it was a single-user application. In some tests running the server on a
machine equipped with an Intel Core i7 mobile CPU, OpenWebRX was able to serve at
least 10 clients without problematic lags, processing the 1 Msps 1/Q source for all of
them separately (Figure 47 is a screenshot of the task manager and the output of the top

command while OpenWebRX was under test).

Megfigyelés Szerkesztés Nézet Slgé
28 5 9'5;'_2&;‘[& Rendszer | Folyamatok | Erdforrasok | Fajirendszerek
» 9,351, 8,05t CPU-hasznilat elézményei
17280 buffers - . = 2
411236 cached Mem o e ———
0%
0%
=TT 1' b/chrnmium browser/chro + — = -
23:41.22 chromium-browser --disable-new-tab-first-run --ena+ [1. cpu 1% I 2. cPy B84.2% I 5. cPu B3.2% [4. cPu 75.8%
1:05.25 python2 rtl_mus.py config rtl -
16:24.48 /usr/bin/X :@ -audit @ -auth /var/lib/mdm/:@.Xauth+ e
9:51.85 /usr/bin/pulseaudio --start --log-target=syslog g —
0:23.85 csdr fir decimate cc 23 0.00652163085937 HAMMING =0
0:23.62 csdr fir_decimate cc 23 0.00652163085937 HAMMING R + + i
0:24.34 csdr fir_decimate cc 23 0.00652163885937 HAMMING s 0 @ = - o i
0:23.98 csdr fir decimate cc 23 0.00652163085937 HAMMING ‘ Memdria Swap
0:23.42 csdr fir decimate cc 23 0.00652163085937 HAMMING 3,1 GiB (82,7 %), dsszesen 3,8 GiB 568,5 MiB (14,5 %], Gsszesen 3,8 GiB
0:23.26 csdr fir decimate cc 23 0.00652163085937 HAMMING
0:23.14 csdr fir_decimate cc 23 6.006521630885937 HAMMING Hilézat elézményei
0:22.98 csdr fir_decimate cc 23 0.00652163085937 HAMMING 6.0 MBS
9:24.26 csdr fir decimate cc 23 6.89652163885937 HAMMING T : : A\
9:24.23 csdr fir_decimate cc 23 6.89652163885937 HAMMING o= 1 i ~ - e S
0:23.64 csdr fir decimate cc 23 0.00652163085937 HAMMING 60 masodperc 50 i) n 0 o 0
0:24.24 mate-system-monitor s 5 s, e
0:09.31 /usr/lib/chromium-browser/chro Fogadss 783 biis KLMES . TBLETE
0:09.18 /usr/1ib/chromiun-browser/chro Fogadva bsszesen 216,0 MiB Kiildve dsszesen 25,9 MiB
0:09.68 /usr/lib/chromium-browser/chro
0:10.07 Jusr/Llib/chromium-browser/chro

Figure 47: OpenWebRX server CPU usage with 10 clients

Using lower sampling rates the server is expected to handle even more clients.
However, there is still a room for improvement regarding DSP speed. Highly efficient
DSP was never an easy task to implement, but nowadays many technologies are
available for parallel computing (GPGPU, FPGA) to facilitate this task. The easiest
improvement could be made by porting the FFT wrappers to GPGPU-based FFT
libraries, and also parallel execution of the FIR filter used in the DDC would boost

speed.

Another planned improvement is related to the high bandwidth usage of individual
clients: the bandwidth could be reduced by decreasing the sample rate of the audio sent
over the network, and implementing an interpolator in JavaScript (as Web Audio API

output works on a fixed sample rate).

80

13 Bibliography

[1] Wireless Innovation Forum, "What is Software Defined Radio?", retrieved on 2014.

12. 15. from: http://www.wirelessinnovation.org/Introduction _to SDR

[2] Nutaq, "A short history of software-defined radio (SDR) technology",
retrieved on 2014. 12. 12. from:

http://nutag.com/en/blog/short-history-software-defined-radio-sdr-technology

[3] Radixon Group, "Software Defined Radio", retrieved on 2014. 12. 13. from:

http://www.winradio.com/home/facts.htm

[4] MacKenzie, A.B.; Reed, J.H.; Athanas, P.; Bostian, C.W.; Buehrer, R.Michael,;
DaSilva, L.A.; Ellingson, S.W.; Hou, Y.T.; Hsiao, M.; Jung-Min Park; Patterson, C.;
Raman, S.; da Silva, C., "Cognitive Radio and Networking Research at Virginia Tech,"

Proceedings of the IEEE , vol. 97, no. 4, pp. 660-688, April 2009

[5] Pieter-Tjerk de Boer, "PA3BFWM's software defined radio page", retrieved on 2014.
12. 14. from: http://wwwhome.cs.utwente.nl/~ptdeboer/ham/sdr/#nov2008
[6] Eged, B.; Babjak, B., "Universal Software Defined Radio Development Platform",

Dynamic Communications Management, Meeting Proceedings RTO-MP-IST-062, pp.
11-1-11-12.

[7] V. Iglesias; J. Grajal; O. Yeste-Ojeda, "Automatic Modulation Classifier for Military
Applications", 19" European Signal Processing Conference, pp. 1814-1818

[8] R. Prosch; A. Daskalaki-Prosch, Technical Handbook for Radio Monitoring
VHF/UHF Edition 2013, Norderstedt: Books on Demand, 2013

[9] Linear Technology, "LTC2216/LTC2215 16-Bit, 80Msps/65Msps Low Noise ADC",
LTC2215 datasheet. Retrieved on 2014. 12. 9. from:
http://cds.linear.com/docs/en/datasheet/22165f.pdf

[10] Ettus Research, "Product Detail, USRP N210", retrieved on 2014. 12. 10. from:
http://www.ettus.com/product/details/UN210-KIT
[11] Nuand, '"bladeRF x40", retrieved on 2014. 12. 10. from:

http://www.nuand.com/blog/product/bladerf-x40/

[12] Michael Ossmann, "HackRF One, an open-source SDR platform", retrieved on

81

http://www.nuand.com/blog/product/bladerf-x40/
http://www.ettus.com/product/details/UN210-KIT
http://cds.linear.com/docs/en/datasheet/22165f.pdf
http://wwwhome.cs.utwente.nl/~ptdeboer/ham/sdr/#nov2008
http://www.winradio.com/home/facts.htm
http://www.winradio.com/home/facts.htm
http://nutaq.com/en/blog/short-history-software-defined-radio-sdr-technology
http://www.wirelessinnovation.org/Introduction_to_SDR

2014. 12. 10. from: https://greatscottgadgets.com/hackrf/

[13] airspy.com, "A tiny and efficient software defined radio", retrieved on 2014. 12. 10.

from: http://airspy.com/

[14] Hanlincrest Ltd., "FUNcube Dongle Pro+ User Manual (V4)", retrieved on 2014.
12. 10. from: http://www.funcubedongle.com/MyImages/FCD2ManualV4.pdf

[15] Osmocom, "rtl-sdr", retrieved on 2014. 12. 10. from:

http://sdr.osmocom.org/trac/wiki/rtl-sdr

[16] Michael Karcher, "Re: How RTL-SDR samples signals", retrieved on 2014. 12. 15.
from: http://permalink.gmance.org/gmance.comp.mobile.osmocom.sdr/264

[17] Pieter-Tjerk de Boer, "websdr.org", retrieved on 2014. 12. 10. from:
http://websdr.org/

[18] K. Reid, "ShinySDR", retrieved on 2014. 12. 10. from:
https://github.com/kpreid/shinysdr

[19] M. Stirling, "WebRadio", retrieved on 2014. 12. 10. from:
http://www.mike-stirling.com/redmine/projects/webradio

[20] Internet Engineering Task Force (IETF), "The WebSocket Protocol", retrieved on
2014. 12. 10. from: http://tools.ietf.org/html/rfc6455

[21] Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing,
pp. 67-85., retrieved on 2014. 12. 13. from: http://www.dspguide.com/CH4.PDF

[22] L. Pucker, "Channelization techniques for Software Defined Radio", Proceedings

of SDR Forum Conference, 2003

[23] Warren Pratt, "shift.c", retrieved on 2014. 12. 14. from:
http://svn.tapr.org/repos_sdr_hpsdr/trunk/ W5WC/PowerSDR_HPSDR_mRX PS/Sourc

e/wdsp/shift.c

[24] J. Blanchard, "A direct form discrete-time FIR filter of order N...", retrieved on

2014. 12. 10. from:

http://en.wikipedia.org/wiki/Finite_impulse response#mediaviewer/File:FIR Filter.svg

[25] T. Rondeau, "To Use or Not to Use FFT Filters", retrieved on 2014. 12. 10. from:

82

http://en.wikipedia.org/wiki/Finite_impulse_response#mediaviewer/File:FIR_Filter.svg
http://svn.tapr.org/repos_sdr_hpsdr/trunk/W5WC/PowerSDR_HPSDR_mRX_PS/Source/wdsp/shift.c
http://svn.tapr.org/repos_sdr_hpsdr/trunk/W5WC/PowerSDR_HPSDR_mRX_PS/Source/wdsp/shift.c
http://www.dspguide.com/CH4.PDF
http://tools.ietf.org/html/rfc6455
http://www.mike-stirling.com/redmine/projects/webradio
https://github.com/kpreid/shinysdr
http://websdr.org/
http://permalink.gmance.org/gmance.comp.mobile.osmocom.sdr/264
http://sdr.osmocom.org/trac/wiki/rtl-sdr
http://www.funcubedongle.com/MyImages/FCD2ManualV4.pdf
http://airspy.com/
https://greatscottgadgets.com/hackrf/

http://www.trondeau.com/blog/2014/2/27/to-use-or-not-to-use-fft-filters.html

[26] Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing,
pp. 311-318,, retrieved on 2014. 12. 13. from: http://www.dspguide.com/CH18.PDF

[27] Wikipedia, "Modulation", retrieved on 2014. 12. 13. from:

http://en.wikipedia.org/wiki/Modulation

[28] Grant Griffin, "DSP Trick: Magnitude Estimator", retrieved on 2014. 12. 13. from:
http://www.dspguru.com/dsp/tricks/magnitude-estimator

[29] R. Yates; R. Lyons, "DC Blocker Algorithms [DSP Tips & Tricks]," Signal
Processing Magazine, IEEE, vol. 25, no. 2, pp. 132-134, March 2008

[30] N. Boutin; H. Kallel, "An arctangent type wideband PM/FM demodulator with
improved performances," Proceedings of the 33rd Midwest Symposium on Circuits and
Systems, 1990., pp. 460-463

[31] P. Ferenczy, Hirkozléselmélet, Budapest: Tankdnyvkiadé, 1972, p. 200.

[32] Midnight Design Solutions, LLC., "AGC ... Overview and Usage", retrieved on
2014. 12. 10. from: http://www.sdr-cube.com/AGC.html

83

http://www.sdr-cube.com/AGC.html
http://www.dspguru.com/dsp/tricks/magnitude-estimator
http://en.wikipedia.org/wiki/Modulation
http://www.dspguide.com/CH18.PDF
http://www.trondeau.com/blog/2014/2/27/to-use-or-not-to-use-fft-filters.html

14 Appendix

As it is planned to continue development of these projects, it is important to state
exactly which version of the software the thesis refers to. Using the git revision control
system (which is also behind GitHub) developers can commit changes to the code
located at a remote repository, and every commit has an unique identifier. By the time of

finishing this thesis, the last commit identifiers for the repositories were:

openwebrx: 978acf87092aa8bf27539fc8135d5d3978d6dda6b
csdr: 9e5ce0cc3b699b95736¢c56e53cealsblc57e376¢8
gr—-haSkfu: 19f0fbb66700458978£f47£f0430£f6782ef5bl19%4ac

Testing the final software on the client side was done on Linux Mint with the following

web browsers:
Chromium version 39.0.2171.65

Mozilla Firefox 34.0

84

https://github.com/simonyiszk/gr-ha5kfu/tree/19f0fbb6670b458978f47f0430f6782ef5b194ac
https://github.com/simonyiszk/csdr/tree/9e5ce0cc3b699b95736c56e53cea151c57e376c8
https://github.com/simonyiszk/openwebrx/tree/978acf87092aa8bf27539fc8135d5d3978d6dda6

	1 Abstract
	2 Összefoglaló
	3 Introduction to OpenWebRX
	3.1 Software release
	3.2 Basic features

	4 Fundamentals of Software Defined Radio
	4.1 Introduction and history
	4.2 Advantages and disadvantages
	4.3 Software Defined Radio architectures
	4.4 The challenge of dynamic range
	4.5 Universal SDR hardware
	4.6 RTL-SDR

	5 System design
	5.1 Analysis of similar software
	5.2 Planning the structure

	6 The server application
	7 The client front-end
	7.1 JavaScript, the heart of the front-end

	8 Digital signal processing in OpenWebRX
	8.1 System architecture
	8.2 Software design for performance
	8.3 Choice of data types
	8.4 Function and parameter naming conventions
	8.5 Testing and evaluation

	9 Channelization and filters
	9.1 Frequency translation
	9.2 Filter design
	9.3 Resampling
	9.4 Band-pass filter using FFT

	10 Demodulation
	10.1 Amplitude modulated signals
	10.2 AM demodulation techniques
	10.3 DC blocking filter
	10.4 Single-sideband signals (SSB)
	10.5 Frequency modulated signals
	10.6 De-emphasis

	11 Other DSP functions
	11.1 Automatic gain control
	11.2 Fast Fourier Transform

	12 Conclusion and potential further improvements
	13 Bibliography
	14 Appendix

