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1 Abstract

OpenWebRX, a web-based SDR receiver application (the topic of my Bachelor's thesis),

is an online communication receiver that supports AM/FM/SSB/CW demodulation, and

its web user interface helps accurate tuning with a real-time updated spectrogram of the

received band. It allows remote access over the Internet, and multiple users can use it

for receiving different signals simultaneously. 

Throughout my Master's thesis project, I have added a demodulator for BPSK31, which

is commonly used on amateur radio bands today, to the server-side signal processing.

The user can select a BPSK31 signal to receive by clicking on the waterfall diagram on

the web user interface, and the decoded data appears in the browser afterwards. 

The CSDR software package that carries out digital signal processing has been extended

with new functions for BPSK31 and RTTY demodulators in a way that it is possible to

reuse the same functions for receiving other BPSK and M-FSK modulated signals as

well. This work included implementing several fundamental synchronization techniques

used in digital demodulators.
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1.1 Összefoglaló

Az OpenWebRX webes rádióvevő alkalmazás (amely a BSc szakdolgozatom témája

volt),  egy  olyan  kommunikációs  vevőt  valósít  meg,  amely  támogatja  az

AM/FM/SSB/CW  üzemmódú  jelek  vételét,  és  webes  kezelőfelülete  a  vételi  sávról

készített,  valós időben frissített spektrogrammal segíti a hangolást.  Lehetővé teszi az

Interneten  keresztüli  távoli  elérést,  és  egyszerre  több  felhasználó  is  használhatja

különböző jelek vételére. 

MSc diplomamunkám során a rádióamatőr sávokban gyakran használt BPSK31 jelek

vételére  alkalmas  demodulátorral  egészítettem  ki  a  szerveroldali  jelfeldolgozást.  A

webes felületen a felhasználó a vízesés diagramra kattintva kiválaszthatja a venni kívánt

BPSK31 jelet, ezt követően a böngészőben megjelenik a dekódolt adat.

A  jelfeldolgozást  végező  CSDR  programcsomag  kiegészült  a  BPSK31  és  RTTY

demodulátorokhoz szükséges funkciókkal, ezek azonban úgy lettek megvalósítva, hogy

használhatók legyenek más BPSK és M-FSK modulált jelek vételére is. A munkához

hozzá tartozott egyes, a digitális demodulátorokban használt alapvető szinkronizációs

módszerek implementálása.
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2 Introduction to OpenWebRX and digital modulations

OpenWebRX is an open source software defined radio (SDR) receiver application with

a  web  interface,  which  allows  amateur  radio  operators  to  set  up  remote  receivers

accessible  over  the  Internet.  OpenWebRX  supports  a  variety  of  SDR  hardware

peripherals  as  input  devices,  and it  can demodulate  analog AM, FM, SSB and CW

signals, which are actively used on the amateur radio bands today.

OpenWebRX  consists  of  a  server  application  that  performs  the  demodulation  and

streams the resulting audio to the clients, and also a frontend application that provides a

convenient user interface in the client web browser (see Figure 1 and 2). Multiple users

can connect to the server at the same time, and each of them can select a channel to

listen to, by clicking on a particular signal on the waterfall display. 
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Figure 1: Original web user interface of OpenWebRX 



The technologies used to build the web interface include HTML5 and Javascript, with

the backend implemented in python. In the background, a digital signal prcessing (DSP)

library,  libcsdr and a command-line tool,  CSDR is performing the signal processing

tasks. As good performance was a design goal for CSDR, it was implemented in C/C++.

The build scripts allow us to constantly monitor the auto-vectorization results of the

GCC  compiler.  To  accelerate  execution  on  ARM  CPUs,  some  algorithms  were

optimized with inline assembly. 

CSDR was designed to perform simple DSP on signals directly from the command-line,

and  today  its  use  is  not  limited  to  OpenWebRX.  CSDR  processes  with  different

processing functions can be chained after each other via FIFOs provided by the Linux

kernel,  thus a simple signal processing dataflow system can be implemented with a

single command (see Figure 3). 

While finishing my Bachelor’s thesis on OpenWebRX and CSDR, the source code of

the software projects have been published as open source on the GitHub project hosting

website. 

I have also built an own website under the domain name SDR.hu (see Figure 7), where

people can access a list of publicly available OpenWebRX servers around the world. At

the time of writing, the website lists more than 100 receivers on 6 continents. There are

receivers  using OpenWebRX (or  its  modified versions)  in  countries  like the United

States, Iceland, Australia and Japan. 
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Figure 2: Block diagram of OpenWebRX web-based SDR software [2]

Figure 4: Using CSDR to build an NFM demodulator from the command-line

http://sdr.hu/


In this chapter, I am writing about OpenWebRX and CSDR in general. In Chapter 3, I

am telling more about the motivation behind digital mode support in OpenWebRX, and

I am writing about the basics of digital modulations. In Chapter 4, each functional unit

of the BPSK31 demodulator that has been integrated into OpenWebRX is described in

detail. In Chapter 5, other results of this work are described, like an RTTY demodulator

(not integrated into OpenWebRX yet), modified versions of the BPSK31 demodulator,

and decoding the wireless transmissions sent by an MCU with built-in RF capabilities,

using CSDR. I feel that all of these are closely related to the topic, and show various

applications of the new features introduced in CSDR.

2.1 Recent improvements on OpenWebRX and CSDR

After finishing OpenWebRX as my Bachelor's thesis project in 2014, I continued to

work on it, fixing software bugs and adding new features. Since the initial release, the

following new features were added:

• The  user  interface  has  been  improved  with  squelch  and  waterfall  controls,

waterfall color auto-adjustment, zoom buttons, and browser support for devices

running iOS.

• OpenWebRX  can  now  be  used  with  most  consumer  SDR hardware  devices
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available  on the market, including AirSpy, SDRPlay, HackRF, AFEDRI SDR,

HPSDR, RFspace devices, FiFi SDR, Perseus and RTL-SDR in various modes.

OpenWebRX supports  many devices  via  the  SoapySDR library  and  rx_tools

command-line tools [1].

• Both the audio stream and the continuously updating waterfall display content is

now compressed at the server and decompressed at the client, which results in

an approximately 8 times decrease in network bandwidth usage compared to the

uncompressed stream. The compression used is ADPCM.

• To allow DSP processing at the client for ADPCM decoding and resampling,

libcsdr has  been  ported  to  Javascript  with  the  Emscripten  compiler.  This

approach  builds  on  the  current  capabilities  of  web  browsers  on  compiling

Javascript to native code when the webpage loads, to speed up processing (Just

In Time compilers). With the help of Emscripten, a unified codebase can be used

for both the client and the server.

• The libcsdr library has been extended with SIMD optimized implementations of

the FIR decimation for the ARM architecture. This resulted in approximately

300% speedup on some embedded platforms including the Raspberry Pi 2.

• I have released a related desktop SDR application for the Raspberry Pi 2, qtcsdr,

which uses the Qt library for UI. It supports both reception and transmission

through  the  rtl-sdr and  rpitx projects,  and  also  uses  the  CSDR  tool  for

processing.  While transmitting,  the underlying  rpitx  tool  (written by Evariste

Courjaud, F5OEO) uses one of the GPIO pins of the Raspberry Pi 2 to generate

an RF signal.

2.2 CSDR used for tracking Schiaparelli EDM lander

I have received e-mails from many people using OpenWebRX and CSDR for numerous

purposes. CSDR has been used in high altitude balloon experiments, OpenWebRX has

been used as the web front end of an FPGA based SDR platform, it has been bundled in

a Linux distribution (SkyWave), and has been used at CubeSat ground stations. 

However, the most interesting message arrived in November, 2016. I have received an

e-mail from Stephan Esterhuizen, who works at NASA Jet Propolusion Laboratory. He
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informed me that CSDR has been utilized at a ground station used during the ExoMars

EDM landing attempt, and it formed a crucial part of their DSP pipeline. 

Schiaparelli, the EDM (entry, descent and landing demonstrator) module is a technology

demonstration vehicle which was carried by the ExoMars Trace Gas Orbiter, with the

goal of demonstrating the capability of ESA to perform a controlled landing on the

surface of Mars. During the landing process, the telemetry signals of Schiaparelli were

monitored from the Giant Meterwave Radio Telescope (GMRT) in India (see Figure 5),

with a phased array of 28 antennas of diameter 45 meters each. The CSDR software was

used during the real-time detection of the very weak 5 Watt EDM transmitter, and it

ingested  data  from  the  GMRT phased  array  at  approximately  140  MBytes/second,

where  it  went  through  various  stages  of  mixing,  filtering,  decimating,  and  doppler

corrections  until  a  resolution  bandwidth  of  1  Hz  was  obtained.  Schiaparelli’s UHF

signal was successfully detected and tracked from pre-atmospheric entry until about one

minute before landing, when the signal was unfortunately lost. Figure 5 shows how the

baudline tool was used to display a waterfall diagram after processing the signal with

CSDR and other tools.
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3 Digital modulations

3.1 Motivation behind digital mode support

The  original  version  of  OpenWebRX  was  only  able  to  demodulate  analog  audio

transmissions like AM, SSB and FM. However, amateur radio operators also use digital

modulations. In modes like BPSK31 and RTTY, the participants have a near  real-time

chat:  the characters typed on their  keyboards are modulated onto an RF carrier  and

decoded at the target, but various modes exist for sending files, pictures (digital SSTV),

and also for extremely weak signal communication like EME. 

There are several free and open source software packages to receive or transmit signals

in a variety of digital modes (e.g. Fldigi, gMFSK, minimodem) and also commercial

ones (Ham Radio Deluxe). To use these software, you have to connect the baseband

input and output of an RF transceiver (typically an amateur radio transceiver with SSB

mode) to the audio device of the PC. 

The GUI of the Fldigi software is shown on Figure 6. It allows you to select a signal on

the waterfall display, and decode it. After clicking on the T/R button, it starts to transmit

the characters you type.  
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However, if OpenWebRX users wanted to receive digital modes, they had to use such

external  software,  that  were  designed  for  the  audio  input  device.  This  meant  a

significant amount of effort: they needed to setup and configure a virtual audio device

and connect it to the audio output of OpenWebRX, then configure the modem software

to use the same virtual audio device. This process might involve setting up proprietary

drivers  on  Windows (e.g.  Virtual  Audio  Cable  software),  or  configuring  Pulseaudio

through  the  pavucontrol  GUI tool  on  Linux,  possibly  loading  the  snd-aloop kernel

module. In addition, OpenWebRX uses a lossy audio compression by default,  which

means some degradation in signal-to-noise ratio (SNR), while it still makes possible to

decode some digital modes if the signal is strong enough.  

I  realized  that  integrating  the  SDR software  and  the  digital  modem removed  such

barriers in front of users with less computer experience, and it would also allow people

interested  in  ham  radio  to  more  quickly  understand  what  digital  modes  are.

OpenWebRX is meant to be a self-contained system: all the users would have to do is to
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open the website, click on a signal and see the decoded data.

I also observed that most open source modem software do not provide an easy to use

API that would have allowed other applications to pass raw audio data into the decoder

and acquire the text output. While it was possible to modify one of these to provide the

proper  APIs,  I  decided to  write  my  own implementation  extending  libcsdr  and  the

CSDR  command  line  tool.  This  allowed  me  to  learn  more  about  the  internals  of

modems.  I  have  chosen  the  BPSK31  mode  as  the  first  to  be  implemented  for

OpenWebRX as it is one of the most widely used digital modes on amateur radio bands.

3.2 Results of modifications

OpenWebRX  has  been  extended  with  the  capability  to  demodulate  BPSK31

transmissions.  The underlying CSDR software  also has  new features,  so that  it  can

demodulate  RTTY  (2-FSK)  and  BPSK31  transmissions,  it  can  generate  BPSK31

transmissions  and  simulate  an  AGWN  channel.  GNU  Octave  scripts  have  been

developed to calculate the S-curve of the error detectors and the variance graph of the

estimators.

Figure  7 and  8 show  the  new  user  interface  of  OpenWebRX,  while  a  BPSK31

transmission is being demodulated. When the webpage of an OpenWebRX receiver is

opened, one of the analog demodulators is selected by default. The user can select a

digital demodulator from the appropriate listbox (next to the DIG button), or click on

the DIG button to select the last used digital demodulator. 

In this case a new panel pops up, which contains the waterfall diagram of the baseband

signal. The user can select which channel to decode by clicking on the diagram. The

decoded data shows up under the waterfall diagram.
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3.3 Changes to the OpenWebRX protocol

To display BPSK31 demodulated data on the web UI, both the OpenWebRX server and

frontend code have been modified.  These components communicate with each other

over WebSockets, with a custom protocol [2, pp. 30]. This protocol has been extended

with new messages, see Table 1. The term "secondary receiver" is used for the digital
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Figure 8: New parts of the web user interface



mode demodulator. It is called secondary because it works in parallel with an analog

demodulator that still provides audio output. The input of the secondary receiver is the

IF signal containing only the channel selected on the main waterfall diagram. 

Source Example message Notes

Client SET secondary_mod=bpsk31 Switch secondary receiver on

Server MSG secondary_fft_size=1024 if_samp_rate=12000 
secondary_bw=31.25 secondary_setup

Send  secondary  receiver  setup
parameters

Server FFTS<an array of 1024 floating point values> Secondary FFT data

Server DAT <text> Secondary demodulator output

Client SET secondary_offset_freq=524 Change offset frequency

Table 1: New messages in OpenWebRX protocol

3.4 Digital modulations in general

Digital modulations mean binary data transmitted over one or more modulated carriers.

The input  of  the  modulator  and the  output  of  the  demodulator  is  a  discrete  signal,

however, the signal passes through an analog wireless channel between them. 

Most of the early work on digital modulations originates from the time when computer

systems  were  interconnected  over  wired  telephone  lines.  Many  of  the  concepts

developed for telephone modems were later reused for wireless transmission [3, pp. 3].

In a digital modem, the demodulator is traditionally more advanced to implement than

the modulator, as it has to deal with tasks like synchronization, decoding, and problems

like variations in signal strength and additive noise on the channel.

Binary phase-shift keying (BPSK) is a simple example on how we can alter the phase of

a single sine wave to encode data.  You can inspect the time domain signal  and the

corresponding constellation diagram of a BPSK signal on Figure 9.
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For quadrature amplitude modulation (QAM), both the amplitude and the phase, and for

frequency-shift  keying  (FSK),  the  frequency  are  the  physical  values  used  for  the

purpose of encoding discrete symbols.

Immediate changes in phase, amplitude or frequency have the drawback of having a

very high signal bandwidth, thus making it inefficient to use on real wireless channels,

where  bandwidth  is  a  finite  resource.  Pulse  shaping  is  used  to  limit  the  signal

bandwidth, and also to eliminate intersymbol interference (ISI). 

The formula (1) describes a QAM modulated complex baseband signal [3, pp. 44]: 

y (t)=∑
n=−∞

∞

s[n] g(t−nT b) (1)

• s [n]  is the value of the n-th discrete symbol (complex),

• g(x)  is the transmit filter or pulse shape (real-valued),

• T b  is the duration of each symbol (the reciprocal of the symbol rate).

The g(x)  function should be chosen so that its value is zero at the maximum amplitude

of each neighboring symbol to eliminate ISI, see (2). 

∀n∈ℤ if n≠0 then g(nT b)=0 (2)

Such a function is  the raised-cosine filter  (3) [4].  If  we take the square root  of the

impulse response of the raised-cosine filter, we get the root-raised-cosine (RRC) filter.

If that is applied at both sides of the wireless channel, their overall impulse response

will be the same as of the the raised-cosine filter (see Figure 10).
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h(t )={
π
4
sinc ( 1

2β ) , t=
±T
2β

sinc ( tT )
cos(πβtT )
1−( 2β t

T )
2 , otherwise} (3)

Special pulse shapes are also used to decrease the required bandwidth of the signal.

SOQPSK-TG is a spectrally efficient modulation scheme used in aeronautics [6], that

defines its own pulse shape. BPSK31 later covered in this thesis uses cosine shaping.

The modulations used typically have 2N  constellation points, which means that a group

of  bits  are  easily  mapped to  each point  (and also  that  the  constellation  diagram is

symmetric). However, during the demodulation process, usually there is an uncertain

phase  offset,  which  would  result  in  the  constellation  points  mapping  to  different

symbols unless some kind of synchronization is carried out. For BPSK signals, one such

scheme is called differential BPSK (DBPSK), where the symbols are encoded in the

directions of the phase changes between constellation points, which are not affected by

a phase offset. 
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The wireless channel is usually modeled with additive white Gaussian noise (AGWN).

(Other  distorsions,  including  multipath  propagation  can  also  occur,  and  need  to  be

modeled  differently.)  To keep  the  integrity  of  data  bits  over  the  wireless  channel,

forward error correction (FEC) techniques are used. These usually increase redundancy

in the data stream, but if a small number of bits have a wrong value, they can detect or

correct it in certain scenarios. (If too many bits are wrong, however, these algorithms

also fail.)  Convolutional  codes,  turbo codes  and low-density  parity  check codes  are

commonly used today [3, pp. 2]. 

3.5 Functional stages of processing in a digital modem

Turning data into a modulated signal usually consists of the following stages [3, pp. 5]:

• encoding,

• bit-to-symbol mapping,

• pulse shaping,

• modulating carrier with amplitude / phase / frequency information. 

Recovering the original data from the modulated signal involves the following stages of

processing:

• carrier recovery,

• retrieving amplitude / phase / frequency from carrier,

• symbol timing recovery,

• equalization,

• symbol-to-bit mapping,

• decoding.

As the circuits of the receiver and the transmitter don't use the exact same clock source,

the signal sampled by the receiver will have some unwanted properties. There will be a

frequency  and  phase  offset  between  the  local  oscillator  in  the  receiver  and  the

transmitter. For that reason, the receiver will "see" the constellation of the modulated

baseband signal continuously rotating (4),
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sr(t )=s(t )e j (2πf offset t+ϕoffset) (4)

where  sr(t )  is  the  received  signal,  s (t)  is  transmitted  signal,  and  f offset  is  the

frequency offset,  ϕoffset  is  the  phase  offset.  Sometimes  the  amount  of  rotation  also

changes over time because the frequency of the oscillators in both the receiver and the

transmitter can be affected by varying  temperature. 

Carrier recovery methods can compensate for the unknown frequency and phase offset

by recovering the original carrier at the receiver, and downconverting the input signal

with that. More information on this topic is available in section 4.6.

Furthermore, the clock frequency and phase will not be synchronized between the D/A

converter in the transmitter, and the A/D converter in the receiver. As a consequence, in

the receiver, we might be sampling the symbol at the wrong time, during transition. In

order to maximize the performance, especially if additive noise is also present on the

channel, we need to sample at the point where the symbol amplitude is maximal.

Looking at the eye pattern of the baseband signal, the maximum eye opening is the ideal

sampling point, where the adjacent symbols have the least effect, and the where the

contribution of the convolved impulse response functions of the pulse shaping filter and

the  channel  reach  its  highest  value  for  the  given  symbol.  Symbol  timing  recovery

methods are detailed in section 4.3.

After the problems described above have been eliminated, recovering the amplitude and

the phase or frequency from the modulated signal and applying symbol-to-bit mapping

is usually an easy task: we need to decide which symbol the constellation point is the

nearest to. 

Another step, equalization is usually required to compensate for distortion caused by the

wireless channel, for which the main source is multipath propagation, resulting in ISI.

Adaptive filters can learn about the channel and realize an impulse response that is the

inverse of it. Finally, the forward error correction used in the transmitter needs to be

reversed.
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3.6 Digital modes on amateur radio bands

Table 2 summarizes the properties of some popular digital modes used by amateur radio

operators. 

Mode Modulation, baudrate

RTTY FSK, 45.45 baud

BPSK31 BPSK, 31.25 baud 

QPSK31 QPSK, 31.25 baud 

WSPR 4-FSK, 1.4648 baud

JT65 [7] 64-CPFSK, 2.69 baud

Olivia-32-1K 32-FSK, 31.25 baud  

Olivia-32-2K 64-FSK, 31.25 baud

Packet radio FSK with 300/1200/2400/4800 baud, GFSK with 9600 baud

Table 2: Properties of some digital modes used on amateur radio bands

Some modes employ FEC techniques, while others do not. For example, BPSK31 and

RTTY do not use any error correction, which make it easier to implement a receiver for

them. QPSK31 and WSPR use convolutional codes, Olivia MFSK uses Walsh functions

for FEC. Comparing BPSK31 and QPSK31, the latter can reduce error rate on typical

radio paths, where the errors are in bursts rather than randomly spread, but it can do no

improvement if the noise level is high in overall.

Some  modes  are  especially  tailored  for  weak  signal  communication,  use  a  frame

structure and can only carry a limited amount of information, like the amateur radio

callsign of the operator or the transmitter output power. WSPR and JT65 are in this

category, both developed by Joe Taylor, K1JT. These have a very low symbol rate and

bandwidth in order to increase SNR at the receiver. JT65 is typically used for earth-

moon-earth  (EME)  and  meteor  scatter  contacts  on  the  VHF and UHF bands.  Tests

showed  that  using  JT65B,  96%  of  the  messages  were  decoded  in  -23  dB  SNR

(measured in 2500 Hz bandwidth) [7]. 

Packet  radio,  which  was  used  to  build  wireless  computer  networks,  should  also  be

mentioned. It was very popular before low-cost Internet access spread, and for many
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amateur radio operators, it was the first experience with services (like bulletin boards,

file access, etc.) that are nowadays part of the Internet culture. Its protocol originates

from X.25, a modified version of which is called AX.25, where each packet contains the

callsign of both the sender and the recipient. Nowadays the only widely used service

still relying on AX.25 is the Automatic Packet Reporting System (APRS), with 1200

baud AFSK signals, typically transmitting over FM links on VHF. 

3.7 Digital modes in consumer devices

While the highlight of my paper is digital modes on amateur radio bands, it should not

be forgotten that many consumer devices use wireless communication: mobile phones,

wireless keyfobs for cars, temperature sensors, etc. 

Internet  of  Things  (IoT) is  also a  common term used today, referring  to  embedded

devices connected to the Internet. Nowadays very cheap RF SoCs are available, and

such a SoC can include an MCU, a modem, up- and downconverters, and a PA in one

package. As the central unit of an embedded device, it can control various peripherals of

the system while it directly performs two-way communication on its radio interface. 

As an example, ESP8266EX chips contain a 32-bit MCU running at 160 MHz along

with an integrated WiFi controller [8], available under 1.5 USD per piece at the time of

writing. 

A variety of RF transceiver ICs are available for products using more simple wireless

protocols. For example, the Texas Instruments CC1111 is a sub-GHz wireless MCU that

can act as an FSK, GFSK, MSK, ASK, or OOK transceiver [10]. 

While CSDR does not support complex modulation schemes like OFDM, some of its

functions could be reused to decode the signals of IoT devices using simple protocols

and modulations, from the command-line, see section 5.10.
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4 A BPSK31 demodulator

BPSK31 is a digital mode originally developed by Peter Martinez (G3PLX) in 1998. It

has been popularized by the WinPSK software and its successors. It uses differential

binary phase-shift keying (DBPSK) modulation with a symbol rate of 31.25 baud. 

BPSK31 does not use any forward error correction, while its variant called QPSK31

uses convolutional code.

On Figure 11, a BPSK31 signal can be inspected. During symbol transitions, BPSK31

does not  keep the  amplitude  constant,  it  rather  has  a  sinusoidal  envelope,  with  the

complex baseband signal reaching zero in the middle of the transition.

We can write the baseband BPSK31 signal as (5).

y (t)=∑
n=−∞

∞

s [n]g (t−nT b)

g( t)={1+cos ( t πT b
)

2
if −T b≤t≤T b

0 if t>T b or t<−T b

}
(5)

• s [n]  corresponds to the symbols (complex numbers, which can take the values

1+0 j  and 1−0 j ), 

• T b  is the duration of a single bit,

• g(t)  is the impulse response of the pulse shaping filter. 
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Figure 11: The real signal present on the antenna, and the downconverted, complex
valued baseband signal. The same signals are shown with different zoom levels on the

left and right. 



To verify this formula, I have created a GNU Octave script which can plot the impulse

response of the pulse shaping filter, along with an example baseband signal for a few

input  symbols  (see  Figure  12).  The  script  is  now  part  of  the  CSDR  distribution

(grc_tests/psk31_sigmodel.m).

While the sinusoidal pulse shape does not provide protection against ISI like the root-

raised-cosine does, it decreases the signal bandwidth so that it is possible to have 256

separate channels even in a single 8 ksps audio stream.  I have verified with spectrum

analysis that the BPSK31 emission bandwidth is around 60 Hz at -26 dB (see Figure

13), which is identical to the results published on the ARRL website [11].
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Figure 12: Output of GNU Octave script for analysis of
BPSK31 baseband signals (Ts is the symbol duration)



4.1 Implementation with CSDR

As the CSDR command-line tool can be used to build DSP chains in the command-line,

running different DSP functions in different processes connected with OS pipes, the

BPSK31 demodulator has been implemented in the same philosophy. 

The command to demodulate a BPSK31 signal acquired from the audio card, centered at

1 kHz can be found below. OpenWebRX uses a similar command internally.

arecord -r48000 -c1 -fS16_LE | \ 
csdr convert_s16_f | \ 
csdr dsb_fc | \ 
csdr shift_addition_cc $(csdr '=-1000./48e3') | \ 
csdr fir_decimate_cc 32 | \ 
csdr bandpass_fir_fft_cc $(csdr '=-(31.25)/1.5e3') \
     $(csdr '=(31.25)/1.5e3') $(csdr '=31.25/1.5e3') | \ 
csdr simple_agc_cc 0.001 0.5 | \ 
csdr timing_recovery_cc GARDNER 48 0.5 2 --add_q | \ 
CSDR_FIXED_BUFSIZE=1 csdr dbpsk_decoder_c_u8 | \ 
CSDR_FIXED_BUFSIZE=1 csdr psk31_varicode_decoder_u8_u8 

The clean separation between building blocks  of this  processing chain allows us  to

easily derive modified digital modes from BPSK31. For example, changing the symbol

rate is just a matter of changing a few parameter values in the command above (see also

section  5.2).  If  one  decided  to  add  FEC to  BPSK31,  it  required  adding  a  pair  of

functions to CSDR (although this is not subject of this thesis). The easy fine tuning of

parameters allows greater flexibility.

The following points contain an analysis of the command above. 
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Figure 13: Spectrum and constellation diagrams of BPSK31 modulated signal



• The  arecord command  reads  the  raw  data  from  the  audio  device,  using  a

sampling rate of 48000 sps, with 16 bit signed integer format. 

• The csdr convert_s16_f command converts the data to floating point (the range

[−32768 ;+36767]  is converted to [−1.0 ;+1.0] ).

• A channelizer  consisting  of  csdr  shift_addition_cc,  csdr  fir_decimate_cc and

csdr bandpass_fir_fft_cc selects a single channel with a bandwidth of ~62.5 Hz,

sampled at 1.5 ksps out of the 48 ksps input signal. 

The bandwidth  of  the  BPSK31 signal  is  only  31.25 Hz,  but  we need some

oversampling for the timing recovery function to work. In this case the signal is

oversampled 48 times. I used a filter with a wider passband than needed because

the user does not always tune to the signal very accurately on the web interface.

The csdr = function allows us to calculate a formula and insert the result as a

parameter into another command. See section 5.12 about that. 

• An AGC (csdr  simple_agc_cc)  keeps  the  signal  power  constant,  however, it

should not distort the amplitude changes at the transients between symbols. On

that reason, its timing constant should be higher than the duration of a symbol.  

• To find  the  maximum amplitude  for  each  symbol  within  the  signal,  symbol

timing recovery  is  used:  csdr  timing_recovery_cc  implements  non-data  aided

timing recovery methods. Here the Gardner method is used.

As  csdr timing_recovery_cc  only outputs one sample per symbol,  the  blocks

afterwards  work  on  signal  sampled  at  approximately  31.25  sps.  The  default

buffer size in CSDR is 1024 or 16384 samples (depending on function), at which

real-time decoding would be impossible, as the processes first wait for the buffer

to fill up before starting processing. 

A recent feature set added to CSDR included an option to set the buffer sizes

from environment variables. Setting the CSDR_FIXED_BUFSIZE variable to 1

means that the functions will work on a single sample and then wait until new

data is available. This boosts the user experience much, the decoded text appears

immediately. 
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• Carrier recovery, symbol decision and differential decoding is jointly done by

csdr dbpsk_decoder_c_u8. 

• The BPSK31 signal has the characters stored in Varicode encoding, so we need

to convert Varicode to ASCII. 

The following part contains a detailed description of the related new functions in CSDR.

4.2 Automatic gain control 

At the time I started this project, the CSDR process has already contained multiple AGC

functions:

• csdr fastagc_ff precisely adapts to the maximum value of the signal, to make

sure that no clipping happens. It makes that possible by working on three buffers

internally.

• csdr agc_ff models how a traditional AGC circuit works. Its attack and decay

rates can be set separately, along with the hang time and attack wait time.

While  these blocks all  work on real signals,  to  build the data flow of my BPSK31

demodulator, I needed a block that can work on complex signals. In addition, I wanted

to  implement  an  algorithm  that  is  really  simple  to  use,  without  many  different

parameters to set.

The resulting function, csdr simple_agc_cc implements a control system, see Figure 14

for an overview.  

A new gain value is calculated for every sample, but it is ran through a low-pass filter

before it is applied, as in (6). 

Gainnew=LPF(Amplitude(Input signal )
Reference ) (6)
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Figure 14: Block diagram of simple_agc_cc



The LPF is a single-pole IIR filter (7), the α  parameter of which is the rate parameter

of csdr simple_agc_cc. 

y [n]=α x [n]+(1−α) y [n−1] (7)

The τ  time constant of the filter corresponding to α  can be calculated as in (8). 

T s=
1
f s

τ=T s( 1−αα )
(8)

In my BPSK31 demodulator, the AGC is applied to a signal sampled at 12 ksps, with

α=0.0001  that corresponds to a time constant of 0.8322 seconds. 

The syntax of the new AGC function in  CSDR is detailed below. It also contains a

parameter for the maximum possible gain output by the controller. 

csdr simple_agc_cc <rate> [reference [max_gain]]

4.3 Symbol timing recovery 

If the IF signal is sampled at 1500 sps, but our symbol rate is only 31.25 baud, then we

need to select 31.25 samples from a set of 1500 samples every second, and decide if

they correspond to a (−1+0 j)  or a (+1+0 j)  symbol ("0" or "1"). 

Figure 15 shows what happens in practice if the signal is noisy and we sample it with a

wrong phase offset. Table 3 shows the symbol decisions made in this case. 

Table 3: Comparison of the
symbol decision and the

transmitted symbols in case of
incorrect sampling phase

In contrast, if the signal is sampled at the correct locations, the symbol decision output

equals to the original data transmitted, see Figure 16.
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Slicer output:
Original:

1110111 10111
1100111 01011



A classification of timing recovery methods is available below [3, pp. 279]. 

• Non-data  aided  timing  recovery  methods only  rely  on  the  input  signal,

without any knowledge of the transmitted symbol or the symbol decision. They

might be placed before the carrier recovery function in the flow graph. They

provide a wider capture range and have better results at low SNR compared to

decision-directed methods. 
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Figure 15: Noisy BPSK31 baseband signal sampled at
wrong locations

Figure 16: Noisy BPSK31 baseband signal sampled at
the center of each symbol



◦ The early-late gate timing recovery algorithm is based on a control system

that tries to find the middle of a symbol by designating three points on it, and

calculating the a phase offset  correction at  the next symbol based on the

values of the input signal at these points. (9) is the formula [12] for the early-

late timing error detector (TED) in case of a real input signal.

e [n]= y [nT +d [n]]⋅( y [nT +0.5T+d [n ]] – y [nT−0.5T +d [n] ]) (9)

▪ e [n]  is the calculated timing error for the n-th symbol, which is the sum

of the timing error for the I and the Q branches ( eI [n]  and eQ[n] ).

▪ yI [n ]  and yQ[n]  correspond to the real and the imaginary part of the

input signal. 

▪ T is the duration of a single symbol. 

▪ d [n]  is the estimated phase offset for the n-th symbol. 

Note that (9) is only the timing error detector, a single part of the control

system. One way to update the phase offset from the error value is using a

proportional controller, as presented in (10) [3, pp. 299], where  μ  is the

update step-size (the proportional gain).

d [n]=d [n−1]−μ⋅e[n−1] (10)

Figure 17 allows us to explain the early-late gate timing error detector (TED)

in an even more simple way. Based on the notation used on the figure, in

case of a real signal, the error can be calculated as (11). 
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Figure 17:The early-late gate TED



e= yM⋅( y R− yL) (11)

◦ The Gardner algorithm (12) [13][14][15] (introduced by Floyd M. Gardner

in 1986) is very similar to the early-late gate, but the loop rather tries to find

the zero crossing with the middle point. The delay between its points is ½ T

(while it was ¼ T for the early-late algorithm). 

e [n]=[ y [(n−1)T +d [n−1]]− y [nT+d [n]] ]⋅y [nT−0.5T+d [n−1] ] (12)

Figure  18,  shows  how  the  Gardner  algorithm  works  by  example.  The

simplified formula for real signals (13) is similar to the one for early-late

TED, but the sign of the error is different. 

e=− yM⋅( yR− y L)= yM⋅( y L− yR) (13)

◦ The squaring timing recovery [16] [3, pp. 294] is similar in principle to the

squaring loop for carrier recovery. The exponentiated signal will contain a

spectral line corresponding to the data rate. If we apply a narrow-band filter

to pass that single spectral line, the peaks of the result in time domain can be

used to sample the original signal (see Figure 19). You can the see the result

of raising a BPSK31 signal to square on Figure 20.
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Figure 18: The Gardner TED
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Figure 19: Block diagram of squaring timing recovery

Figure 20: BPSK31 signal squared, with peaks at DC, +31.25 Hz and -31.25 Hz



• Decision-directed  timing  recovery  methods take  the  symbol  decisions  into

consideration. In general, they produce better results if executed after matched

filtering and carrier recovery, and if the SNR is sufficiently high enough.

◦ The TED formula of the Mueller and Müller algorithm [17] [18] is (14) in

case of a complex input signal.

e [n]=ℜ{ f decide * ( y ((n−1)T +d [n−1]) ) y (nT+d [n ])−

f decide *( y (nT +d [n]) ) y ((n−1)T +d [n−1])+
d [n−1]}

(14)

(15) is a simplified formula for the M&M TED:

e=ℜ { f decide*( y L) yC−f decide* ( yC) yL } (15)

◦ The formula of the zero-crossing TED [18](16) is similar to the Mueller and

Müller algorithm above.

e [n]= y (nT−0.5T +d [n] ) [ f decide ( y ((n−1)T +d [n] ) )−f decide ( y (nT+d [n]) ) ] (16)

Its simplified version is (17), see Figure 21 for an example how this formula

works. 

e= yM [ f decide( yL)−f decide( yR)] (17)
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Figure 21: The zero-crossing TED



Some methods only have a TED formula for real signals, but they can still be applied to

complex signals, by calculating the error for the real and the imaginary part separately,

and summing them up, as in (18) [13]. 

e [n]=eI [n]+eQ[n] (18)

Both  carrier  and  symbol  timing  recovery  algorithms  introduce  a  trade-off  between

convergence speed and the variance of estimation error [19].

4.4 Implementation of non-data aided timing recovery 

For CSDR, the early-late and the Gardner algorithms have been implemented. These are

both non-data aided timing recovery methods, so I considered these more sufficient for

general use because they also work at low SNR. 

The input of  csdr timing_recovery_cc is the baseband signal, which is advised to be

oversampled at least 4 times compared to the data rate. The output is the signal sampled

at the estimated maximum eye openings, at the data rate. These complex samples can be

mapped to the nearest constellation points to find the symbols corresponding to them.

What differentiates the csdr timing_recovery_cc command from other open source tools

available  is  the  possibility  to  generate  images  about  the  internal  working  of  the

algorithm  using  GNU  Octave  immediately.  Using  the  --octave switch  for  csdr

timing_recovery_cc, and piping stderr into an interactive GNU Octave session, one can

get immediate visual feedback about the performance of the timing recovery algorithm

on  the  given  signal,  and  the  graphs  can  also  be  saved  to  PNG  files  using  the

--octave-save switch. 

Both the early-late and the Gardner methods take three samples into consideration while

determining  the  timing  error.  Figure  22 shows  an  example  output  of  csdr

timing_recovery_cc using the plotting capabilities of GNU Octave. Figure 23 shows a

compilation  of  diagrams  generated  during  the  phase  acquisition  using  the  Gardner

method on a BPSK31 signal,  and Figure  24 shows the same for the early-late  gate

algorithm, but here the signal gets past the preamble phase, and the algorithm still keeps

locking.
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Figure 23 and 24 also emphasize the difference between the Gardner and the early-late

algorithm: the Gardner algorithm tries to find the middle of the signal transition, and the

output sample is taken from the red dot on the left, while the early-late algorithm tries to

"climb" to the middle of the symbol, taking the output sample from the middle red dot.
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Figure 22: GNU Octave plotting the status of the Gardner algorithm, with the actual
error value and phase offset in samples (cxoff). It shows the I and Q branches

separately (on the left), and also the complex signal on a 3D plot (on the right).

Figure 23: The Gardner timing recovery algorithm locks onto the BPSK31 baseband
signal. (The number in the top right corner of each diagram shows the sequence.)
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Figure 24: The early-late gate timing recovery algorithm locks onto the BPSK31
baseband signal during preamble, and stays locked afterwards.



The syntax of the CSDR function corresponding to the timing recovery is as below: 

csdr timing_recovery_cc <algorithm> <decimation> [mu [max_error \
     [--add_q [--output_error | --output_indexes | \
     --octave <show_every_nth> | \
     --octave_save <show_every_nth> <directory> ]]]] 

The algorithm  can currently be  set to "GARDNER" or "EARLYLATE". 

The  decimation parameter  refers  to  the number of  samples  per symbol at  the input

signal. 

The mu parameter is the update step of the loop, see (10).

The max_error allows us to clip the error signal, to keep it in a given range. 

If the  --add_q parameter is  false, the TED is only evaluated on the real part  of the

signal. If --add_q is true, it is evaluated on both the I and the Q branch, and the results

are added.

With  --output_error,  the  output  of  the  function  is  changed:  it  rather  outputs  the

calculated error of the TED for each output sample, which can be used for generating

the S-curve, see section 4.5.

Similarly,  with  --output_indexes,  the  function  outputs  the  indexes  of  the  maximum

amplitude points in the input stream, which can be used while generating the estimator

variance diagram, see section 4.5.

With the  --octave  switch,  GNU Octave commands are written to the standard error,

which plot the input samples related to the current symbol, and also the relevant points

on  them.  The  required  parameter  show_every_nth means  that  one  out  of

show_every_nth will be plotted with Octave. If show_every_nth is 0, then a plot will be

generated for every single symbol. The --octave-save parameter has the same function,

but it saves the graphs into PNG files into the directory also given as parameter.

The zsh  shell can be used to redirect the standard error to GNU Octave directly from

csdr timing_recovery_cc, as in the example command below. This allows one to plot the

internals of the algorithm while running a signal through it. 
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csdr timing_recovery_cc GARDNER 48 0.5 2 --add_q \
    --octave 0 2> >(octave -i)

4.5 Symbol timing recovery performance measurements

While developing the analog demodulator processing chain, it was sufficient to observe

the spurious-free dynamic range (SFDR) for most algorithms to confirm that they work

properly. However, evaluating the performance of timing recovery algorithms is a more

difficult task.

One of the metrics of the timing recovery algorithm is the S-curve. The S-curve shows

how the  TED reacts  if  fed  with the  same input  signal  with  different  phase  offsets.

Basically, it is a plot to show how the error depends on the phase offset. To draw this

curve, the TED need to be placed in an open loop, so that the error does not have any

effect on the sampling phase in the next iteration.

A GNU Octave script,  grc_tests/bpsk31_scurve.m has been written on the purpose of

generating the S-curve, the results of which are found on Figure 25 and Figure 26. The

template for the command used to generate the input with changing phase offset can be

found below. It is used internally by the Octave script.

dd bs=8 skip=<phase_offset> \
    if=bpsk31_baseband_sample_complex_8000_sps_010101.raw | \
csdr timing_recovery_cc <timing_recovery_algorithm> 256 \
    --add_q –output_error

The S-curve is  correct  if  the error is  only zero when the symbol is  sampled at  the

maximum amplitude. If the error is zero at any other point, it is called a false lock point,

because the loop can get stuck there while sampling at the wrong phase. 

A sufficient TED is free from false lock points. In both Figure  25 and  26, the phase

offsets  of 0,  128 and 256 correspond to maximum eye openings,  and no false  lock

points can be identified. A significant difference between the two TED formulas is the

sign of the error, which needs to be taken into consideration in other parts of the timing

recovery algorithm.
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We can further analyze the performance of the estimator by generating the variance

diagram, by measuring the variance of the phase error while feeding the demodulator

with the sum of modulated random data and Gaussian white noise. The diagram shows

the variance at different SNR per bit ( Eb/N0 ) values. 

The grc_tests/bpsk31_tedvar.m script has been written to carry out this measurement. It
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Figure 25: S-curve for early-late TED on BPSK31
baseband signal 

Figure 26: S-curve for Gardner TED on BPSK31
baseband signal



measures the estimator variance for 1,000,000 symbols. As the necessary computations

take a long time, this Octave script has been optimized to use multiple CPU cores, and it

caches the signal and the noise in advance. The output of the script can be inspected on

Figure 27 and 28. 
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Figure 27: Estimator variance of the Gardner
algorithm in csdr timing_recovery_cc

Figure 28: Estimator variance of the early-late gate
algorithm in csdr timing_recovery_cc



4.6 Carrier recovery

If the conditions are ideal, the IF signal is the baseband BPSK31 signal centered at DC.

However,  in  practice  there  is  an  unknown  phase  or  frequency  offset  between  the

transmitted and the received signal, as the oscillators of the transmitter and the receiver

are not synchronized, and are also subject to drifting due to temperature changes (this

offset might even change in time). 

We can see the result of a frequency offset at the receiver on Figure 30 and 31, while the

original signal (without offset) is shown on Figure 29. 
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Figure 29: Transmitted BPSK31 
baseband signal



The received baseband signal can be written as (19), where the  ϕoffset  contributes a

constant  phase  difference,  and  f offset  contributes  a  constant  phase  rotation  to  the

baseband signal. 

yreceived (t)=e j(2π f offset t+ϕoffset) ∑
n=−∞

∞

s[n] g(t−nT b) (19)

This rotation can also be inspected on the constellation diagram, as seen on Figure 32.

(In case of a frequency offset, it is also common to see a full circle on the constellation

diagram.)

42

Figure 31: Received BPSK31 baseband signal

with a frequency offset of Δω=0.1π
rad
sec

Figure 30: Received BPSK31 baseband signal

with a frequency offset of Δω=0.005π
rad
sec



The carrier recovery function should estimate the unknown e j (2π f offset t+ϕoffset )  in (19), and

multiply the input signal with the conjugate of the estimate in order to correct it. 

We classify the carrier recovery methods as follows. 

• Non-data  aided  carrier  recovery  methods  do  not  assume  any  previous

knowledge about the data symbols. 

◦ Coarse  carrier  acquisition  using  DFT/FFT is  based  on  the  Fourier

transform of the input signal, and looks for the bin corresponding to the peak

of the signal to find the frequency offset, see Figure 33. 

◦ The Costas loop is a phase-locked loop (PLL) modified so that it can lock

on PSK signals (see Figure  34) and it is possible to use it for fine carrier

acquisition. It also has decision directed versions, as shown later. 
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Figure 32: Constellation diagram of transmitted BPSK signal (on the left), received
BPSK signal with a phase offset (in the middle), received BPSK signal with a frequency

offset (on the right).

Figure 33: 
Coarse carrier acquisition



◦ It can be shown that raising PSK and QAM input signals to a given power,

the  result  will  have  a  sinusoidal  component  with  a  constant  phase.  The

squaring loop uses a PLL to lock on this component. 

• Decision directed carrier recovery calculates the phase difference between the

received sample and the corresponding output of the symbol decoder, thus it

takes  the  value  of  the  decoded  symbol  into  consideration  and  attempts  to

minimize the phase difference using an adequate control loop, see Figure 36. See

also Figure 37 for a Costas loop that can lock on QPSK signals. 
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Figure 35: Block diagram of squaring loop [3, pp. 249]

Figure 34: Block diagram of Costas loop for locking on BPSK signals [23]



• Data-aided  carrier  recovery methods  uses  previous  knowledge  about  the

transmitted symbols: 

◦ if  the  transmission  starts  with  a  sequence  of  training  symbols,  e.  g.  a

preamble that precedes each packet, 

◦ if a pilot signal is available to lock onto. 

For best performance, carrier recovery can be done in multiple stages: first, a coarse

carrier acquisition can be made using FFT, it can be refined using one of the non-data-

aided methods, and then we can proceed to the decision-directed method. 

The locking range of latter stages is narrower, but their error variance in tracking mode

is better. Note that the timing recovery and equalization might have adaptive parts that

also need to be tuned before we can proceed from one stage to another. 
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Figure 36: Block diagram of 
decision directed carrier recovery [3,

pp. 264]

Figure 37: Block diagram of Costas loop for 
locking on QAM signals [25], [3, pp. 260]



The carrier recovery method I first implemented was a Costas loop, which worked well

if the frequency difference was very small (see section 5.4). However, the user typically

fails to correctly select the center of the BPSK31 signal on the web UI, and clicking at

the wrong pixel on the waterfall diagram easily results in a frequency error in the order

of 10 Hz. 

4.7 Synchronization in a differential PSK receiver

For differential BPSK signals, there is a method that allows joint carrier synchronization

and differential decoding, as described in [20, pp. 26]. 

Even  if  carrier  synchronization  is  applied  at  the  receiver,  the  constellation  of  the

received signal  is  subject  to  a  possible  180° rotation.  In  this  case,  the  samples  get

mapped to wrong symbols at the slicer. 

As an example, if we send the symbol sequence "01001" at the transmitter, we might get

"01001" or "10110" at the receiver, based on how the carrier recovery locked. 

A way to solve this  problem is encoding the symbols with the phase changes. This

technique is called DBPSK (differential BPSK). For BPSK31:

• if the phase remains unchanged for the duration of a symbol, it means a "1",

• if the phase changes 180° between symbols, is means a "0". 

From the output of the slicer, we have the necessary information about phase changes.

See Table 4 for the function carried out by the differential decoder.

Last
input

Current
input

Output

0 0 1
0 1 0
1 0 0
1 1 1

Table 4: Logic function carried out 

by the differential decoder

CSDR now also contains a differential encoder that applies this operation in reverse. "0"

and "1" symbols  map to 0x00 and 0x01 bytes  at  the input  and output  of  the these
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commands. You can find the syntax of the related CSDR commands below:

csdr differential_decoder_u8_u8
csdr differential_encoder_u8_u8

To show how the  binary  data  can  be  read  and  decoded  by  visually  inspecting  the

waveform, see Figure 38. 

Note that the decoded data does not depend on the initial phase offset of the receiver, as

seen on Figure 39. 

However, carrier synchronization and differential decoding can be done in a single step,

as  implemented  in  csdr  dbpsk_decoder_c_u8  (see  Figure  40).  The  method  to  be

described works on the output of symbol timing recovery (with one sample for each

symbol),  and  makes  use  of  the  current  and  the  last  input  sample,  calculating  the

difference of their  phase.  If the difference is above 90°, we assume that the current

symbol has changed, and write an "0" to the output, while if the difference is below 90°,

we assume that the symbol has not changed, and write a "1". 
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Figure 39: Symbol decisions (above) and differential decoded data (below) 
with a different receiver starting phase offset

Figure 38: Symbol decisions (above) and differential decoded data (below)



4.8 Varicode decoder

BPSK31 uses Varicode for encoding the characters, which is a variable-length code that

maps shorter bit sequences to more frequently used letters. Characters are delimited by

multiple "0" symbols. 

The bit sequences of the characters were designed in a way that multiple "0" bits cannot

come after each other inside them. If we see multiple "0" bits after each other, the next

"1" bit will be part of a new character. 

With the full conversion table (in Table 5) one can decode the Varicode characters into

ASCII. Figure 41 shows the waveform with the Varicode characters highlighted. Using

the code table, the character sequence "abc" can be decoded.
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Figure 40: The block diagram of csdr  dbpsk_decoder_c_u8



I first  observed the protocol by inspecting the signal generated by the Fldigi digital

modem software. During idle periods, when the software has ran out of characters to

send and is waiting for the user to start typing again, the Fldigi software is continuously

sending zeros, which means a sequence of "101010..." after differential encoding. This

behavior allows the symbol timing recovery algorithm to keep synchronized. 
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Figure 41: BPSK31 waveform and corresponding binary data 
(after differential decoding)

Table 5: Varicode to ASCII mapping table, including control characters [11]

A 1111101 a 1011 SPACE 1 NUL 1010101011
B 11101011 b 1011111 ! 111111111 SOH 1011011011
C 10101101 c 101111 " 101011111 STX 1011101101
D 10110101 d 101101 # 111110101 ETX 1101110111
E 1110111 e 11 $ 111011011 EOT 1011101011
F 11011011 f 111101 % 1011010101 ENQ 1101011111
G 11111101 g 1011011 & 1010111011 ACK 1011101111
H 101010101 h 101011 ( 11111011 BEL 1011111101
I 1111111 i 1101 ) 11110111 BS 1011111111
J 111111101 j 111101011 * 101101111 HT 11101111
K 101111101 k 10111111 + 111011111 LF 11101
L 11010111 l 11011 , 1110101 VT 1101101111
M 10111011 m 111011 - 110101 FF 1011011101
N 11011101 n 1111 . 1010111 CR 11111
O 10101011 o 111 / 110101111 SO 1101110101
P 11010101 p 1111111 0 10110111 SI 1110101011
Q 111011101 q 110111111 1 10111101 DLE 1011110111
R 10101111 r 10101 2 11101101 DCI 1011110101
S 1101111 s 10111 3 11111111 DC2 1110101101
T 1101101 t 101 4 101110111 DC3 1110101111
U 101010111 u 110111 5 101011011 DC4 1101011011
V 110110101 v 1111011 6 101101011 NAK 1101101011
W 101011101 w 1101011 7 110101101 SYN 1101101101
X 101110101 x 11011111 8 110101011 ETB 1101010111
Y 101111011 y 1011101 9 110110111 CAN 1101111011
Z 101111011 z 111010101 [ 1010101101 EM 1101111101
: 11110101 < 111101101 \ 111110111 SUB 1110110111
/ 1011011111 = 1010101 ] 111101111 ESC 1101010101
{ 1010110111 > 111010111 ^ 111111011 FS 1101011101
| 110111011 ? 1010101111 _ 1010111111 GS 1110111011
} 1010110101 @ 1010111101 . 101101101 RS 1011111011
; 110111101 ~ 1011010111 DEL 1110110101 US 1101111111



The corresponding CSDR functions are listed below. CSDR also contains a Varicode

encoder that can be used to generate BPSK31 modulated signals. 

csdr psk31_varicode_decoder_u8_u8
csdr psk31_varicode_encoder_u8_u8

The input of the Varicode decoder is 0x00 and 0x01 bytes, the symbols after differential

decoding. The output of the decoder is ASCII data. (The same applies to the encoder,

but in reverse order.)

Internally the Varicode decoder uses a FIFO to store the last 32 bits received, and if it

detects  a  valid  Varicode  character  at  the  beginning  of  the  FIFO,  it  writes  the

corresponding ASCII value to the standard output.

4.9 Resource usage

BPSK31 is very low data rate, and the demodulator works from an IF signal of around

10-12  ksps,  which  results  in  low  CPU  usage.  While  the  main  waterfall  diagram

currently uses overlapped FFT by default, the secondary waterfall is not, and the FFT

size for it is also smaller, 1024 compared to 4096 for the main waterfall, thus the FFT

operations  for  the  secondary  waterfall  diagram  use  much  less  CPU  than  the  main

waterfall diagram. As a consequence, there is no point in doing optimizations for low

data rate  digital  modes.  You can compare CPU usage on a development  version of

OpenWebRX with BPSK31 demodulator Figure 42 and 43.
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Figure 43: OpenWebRX and its child processes in the output of the top command while
running the BPSK31 demodulator

Figure 42: OpenWebRX and its child processes in the output of the top command
without running the BPSK31 demodulator



5 More applications of CSDR

5.1 Generating BPSK31

To have a complete implementation of BPSK31 in CSDR, I also needed a BPSK31

transmitter. (This method was also used while generating estimator variance graphs.)

The following command outputs a valid BPSK31 signal to the audio card:

while true; do 
    echo -n "CQ CQ CQ DE HA7ILM HA7ILM HA7ILM PSE K   "; 
done | \
csdr psk31_varicode_encoder_u8_u8 | \
csdr differential_encoder_u8_u8 | \
csdr psk_modulator_u8_c 2 | \
csdr gain_ff 0.25 | \
csdr psk31_interpolate_sine_cc 256 | \
csdr shift_addition_cc 0.125 | \
csdr realpart_cf |  \
csdr convert_f_s16 | \
mplayer -cache 1024 -quiet \
    -rawaudio samplesize=2:channels=1:rate=8000 -demuxer rawaudio -

There is another version that produces the same result, using the formula (5):

while true; do \
    echo -n "CQ CQ CQ DE HA7ILM HA7ILM HA7ILM PSE K   "; \
done | \
csdr psk31_varicode_encoder_u8_u8 | \
csdr differential_encoder_u8_u8 | \
csdr psk_modulator_u8_c 2 | \
csdr gain_ff 256 | \
csdr plain_interpolate_cc 256 | \
csdr pulse_shaping_filter_cc COSINE 256 | \
csdr shift_addition_cc 0.125 | \
csdr realpart_cf | \
csdr convert_f_s16 | \
mplayer -cache 1024 -quiet \
    -rawaudio samplesize=2:channels=1:rate=8000 -demuxer rawaudio -

Let's analyze each command. Varicode and differential encoding have been described in

sections  4.7 and 4.8. A common function for both commands, the PSK modulator can

generate  a  baseband  N-PSK  signal,  mapping  input  bytes  to  samples  at  the  given

constellation points:

csdr psk_modulator_u8_c <n_psk>

For a BPSK signal, n_psk=2 and the samples output are:
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• complex floating point 1+0 j  for 0x00 byte input, 

• complex floating point −1+0 j  for 0x01 byte input.

To add pulse shaping,  we need to  interpolate  these  samples.  We can either  use the

function  psk31_interpolate_sine_cc  the result  of which is  a valid BPSK31 baseband

signal,  or  carry  out  the  raw  interpolation  (adding  zero  samples  between  the  ones

corresponding to the symbols) and running the pulse shaping filter  g(t)  in separate

steps, as in (5).

csdr psk31_interpolate_sine_cc <interpolation> 
csdr plain_interpolate_cc <interpolation>
csdr pulse_shaping_filter_cc \
    (RRC <samples_per_symbol> <num_taps> <beta> | \
    COSINE <samples_per_symbol>)

The remaining csdr commands shift the signal up to 2 kHz and turn it into a real signal, 

then play it on the audio device.

5.2 Demodulating BPSK63 

Note that using this transmitter and receiver structure, we can almost instantly derive

different modulations from a given one. For example, deriving a BPSK63 demodulator

from the command for BPSK31 is the matter of changing four numbers. 

arecord -r48000 -c1 -fS16_LE | \ 
csdr convert_s16_f | \ 
csdr dsb_fc | \ 
csdr shift_addition_cc $(csdr '=-1000./48e3') | \ 
csdr fir_decimate_cc 32 | \ 
csdr bandpass_fir_fft_cc $(csdr '=-(62.5)/1.5e3') \ 
     $(csdr '=(62.5)/1.5e3') $(csdr '=62.5/1.5e3') | \ 
csdr simple_agc_cc 0.001 0.5 | \ 
csdr timing_recovery_cc GARDNER 24 0.5 2 --add_q | \ 
CSDR_FIXED_BUFSIZE=1 csdr dbpsk_decoder_c_u8 | \ 
CSDR_FIXED_BUFSIZE=1 csdr psk31_varicode_decoder_u8_u8

The command below has been tested against a signal generated with Fldigi, as seen on

Figure 44. 
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5.3 BPSK31 with different pulse shape

We can also easily  derive new digital  modes that  previously did not exist  from the

command of an existing one. For example, building a custom version of BPSK31 that

uses RRC pulse shape can also be made by changing the command line, by adding the

RRC  filter  to  both  the  receiver  and  the  transmitter.  The  RRC  filtered  BPSK31  is

expected to be less sensitive to ISI.

The command below provides an RRC filtered BPSK31 transmitter ( β=0.5 ). 

while true; do echo -n "CQ CQ CQ DE HA7ILM HA7ILM HA7ILM PSE K   "; \
    done | \
csdr psk31_varicode_encoder_u8_u8 | \
csdr differential_encoder_u8_u8 | \
csdr psk_modulator_u8_c 2 | \
csdr gain_ff 64 | \
csdr plain_interpolate_cc 256 | \
csdr pulse_shaping_filter_cc RRC 256 1001 0.5 | \
csdr shift_addition_cc 0.125 | \
csdr realpart_cf | \ 
csdr convert_f_s16 | \
mplayer -cache 1024 -quiet -rawaudio \
    samplesize=2:channels=1:rate=8000 -demuxer rawaudio -

The change in the pulse shape can be instantly seen on the waveform as well, see Figure
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Figure 44: BPSK63 demodulator developed quickly with CSDR



45 below.

The demodulator command is as follows:

arecord -r48000 -c1 -fS16_LE | \ 
csdr convert_s16_f | \ 
csdr dsb_fc | \ 
csdr shift_addition_cc $(csdr '=-1000./48e3') | \ 
csdr fir_decimate_cc 32 | \ 
csdr pulse_shaping_filter_cc RRC 48 1001 0.5 | \ 
csdr simple_agc_cc 0.001 0.5 | \ 
csdr timing_recovery_cc GARDNER 48 0.5 2 --add_q | \ 
CSDR_FIXED_BUFSIZE=1 csdr dbpsk_decoder_c_u8 | \ 
CSDR_FIXED_BUFSIZE=1 csdr psk31_varicode_decoder_u8_u8 

Note that Fldigi was also found to correctly decode BPSK31 with RRC pulse shaping,

although not optimized for that. 

5.4 Costas loop for carrier recovery

The command below is a version of the BPSK31 demodulator that uses a Costas loop. 

arecord -r48000 -c1 -fS16_LE | \
csdr convert_s16_f | \
csdr dsb_fc | \
csdr shift_addition_cc $(csdr '=-1000./48e3') | \
csdr fir_decimate_cc 32 | \
csdr bandpass_fir_fft_cc $(csdr '=-(31.25)/1.5e3') \
     $(csdr '=(31.25)/1.5e3') $(csdr '=31.25/1.5e3') | \
csdr simple_agc_cc 0.001 0.5 | \
csdr timing_recovery_cc GARDNER 48 0.5 2 --add_q | \
CSDR_FIXED_BUFSIZE=1 csdr bpsk_costas_loop_cc 0.10 0.707 | \
CSDR_FIXED_BUFSIZE=1 csdr realpart_cf | \
CSDR_FIXED_BUFSIZE=1 csdr binary_slicer_f_u8 | \
CSDR_FIXED_BUFSIZE=1 csdr differential_decoder_u8_u8 | \
CSDR_FIXED_BUFSIZE=1 csdr psk31_varicode_decoder_u8_u8

In this command, the Costas loop is placed after the symbol timing recovery phase. The

Gardner algorithm still works well if a small, additional phase or frequency offset is

present. This way the Costas loop works on one sample per symbol, and tries to rotate

the samples back, as near to the ideal BPSK constellation points as possible. 
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Figure 45: Waveform of generated BPSK31 signal with RRC pulse shape



In practice, the Costas loop was less efficient than the solution described in  4.7. This

could be improved upon if a coarse carrier recovery algorithm has been applied first. It

also helped if the waterfall display was improved so that it was easier to tune to the

PSK31 signal accurately.

However, the Costas loop described here is a general algorithm that could possibly used

for  other  modulations  as  well,  not  only  BPSK31.  The syntax  of  the  related  CSDR

function is as below: 

csdr bpsk_costas_loop_cc <loop_bandwidth> <damping_factor> \
     [--dd | --decision_directed] [--output_error | \
     --output_dphase | --output_nco | \
     --output_combined <error_file> <dphase_file> <nco_file>]

Figure 46 shows the block diagram for the CSDR implementation of a Costas loop for

BPSK signals. Both of its input and output is complex floating point. It has a switch to

turn it into decision directed mode (--dd or --decision_directed), then it implements the

same block diagram as on Figure 36.

Internally, it uses a second order loop filter, the structure of which is shown on Figure

47, where (20) and (21) are the formulas for calculating the α  and β  parameters [21].

α=
4 ζθn

1+2 ζθn+θn
2 (20)

β=
4θn

2

1+2ζθn+θn
2 (21)
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Figure 46: Block diagram for non-data aided mode of 
csdr bpsk_costas_loop_cc



The ζ  parameter is the damping factor, which is to be chosen to 0.707 for a critically

damped loop. θn  stands for the loop bandwidth. The same parameters are to be given to

the csdr bpsk_costas_loop_cc command. 

The error detector calculates  I⋅Q  in the default non-data aided mode, and calculates

the phase distance from the nearest symbol in decision directed mode. Its S-curve is

shown on Figure 48. 
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Figure 47: Second order loop filter for PI controller

Figure 48: S-curve of BPSK Costas loop in CSDR. 
The blue line corresponds to the non-data aided mode, 

and the red line corresponds to the decision directed mode.



The  optional  parameters  --output_error,  --output_dphase, --output_nco  and

--output_combined allow  us  to  inspect  how  the  algorithm  works  internally  during

synchronization. 

Figure X shows a situation where the input signal had a large frequency error and a high

amount of noise, but the loop managed to achieve phase lock. 

If the frequency offset was too high and the loop did not manage to lock, see the error

signal in such a case on Figure 50.

I also created a GNU Radio test bench for this function, which allowed me to compare

my algorithm to the Costas loop built into GNU Radio. 
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Figure 49: Internal operation of BPSK Costas loop in CSDR

Figure 50: The error signal when the Costas loop failed to lock



The decision  directed  version  of  the  Costas  loop  needs  to  decide  about  the  closest

symbol to the given sample. Even if the non-data aided version is used, we still need to

decide about it in the next step, because we want to turn the output samples into bits. 

For this task, we can split  the constellation into areas around the ideal constellation

points. If the sample falls into a given area, we can return the symbol mapped to it.

In case of BPSK, it is a very easy task: if the real part of the symbol is positive, we have

a "1" symbol, else we have a "0" symbol, as on Figure 51. 

The CSDR function to carry out this operation is called  binary_slicer_f_u8,  as hard

symbol decision is also referred to as "slicer". The syntax of the related CSDR function

is  below.  It  applies  hard  symbol  decision  to  the  complex  baseband  input  signal.  It

outputs a 0x00 byte or a 0x01 byte based on the decision. 

csdr binary_slicer_f_u8

5.5 Demodulating RTTY

Radioteletype  (RTTY)  is  a  system  that  originally  consisted  of  two  or  more

electromechanical teleprinters in different locations, connected over a wireless link [22].

This mode has a long history on amateur radio bands: amateur radio operators have

been using modified commercial teleprinters since the 1950s. 

RTTY uses a 2-FSK modulated signal, which means transmitting two different tones for

"0" and "1" symbols (also called "space" and "mark"), with a tone spacing of 170 Hz,
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Figure 51: Operation of slicer
on BPSK signal



and symbol rate of 45.45 baud. The line coding is similar to UART: there is a start bit, a

stop bit, and there are data bits in between. However, RTTY uses 5 data bits, encoded in

Baudot code instead of ASCII. 

The Baudot code consists of two tables, one for letters and another for numbers and

symbols  (figures).  Two special  codes  were  selected  to  change  between  tables.  The

Baudot code is shown in Table 6.

I  have  implemented  two  different  types  of  FSK demodulators  for  RTTY. The  first

command uses an FM detector to acquire frequency information from the signal:

arecord -r48000 -c1 -fS16_LE | \
csdr convert_s16_f | \
csdr dsb_fc | \
csdr shift_addition_cc $(csdr =-2000/48e3) | \
csdr fir_decimate_cc 48 | \
CSDR_FIXED_BUFSIZE=128 csdr simple_agc_cc 0.0001 0.5 | \
csdr peaks_fir_cc 31 $(csdr =85/1e3) $(csdr =-85/1e3) | \
CSDR_FIXED_BUFSIZE=128 csdr fmdemod_quadri_cf | \
CSDR_FIXED_BUFSIZE=128 csdr gain_ff 40 | \
CSDR_FIXED_BUFSIZE=256 csdr serial_line_decoder_f_u8 22 5 1 | \
CSDR_FIXED_BUFSIZE=4 csdr rtty_baudot2ascii_u8_u8

The other FSK demodulator compares the output of the space and mark filters to find

out about the transmitted symbol: 
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Table 6: Baudot code table [24]



arecord -r48000 -c1 -fS16_LE | \
csdr convert_s16_f | \
csdr dsb_fc | \
csdr shift_addition_cc $(csdr =-2000/48e3) | \
csdr fir_decimate_cc 48 | \
CSDR_FIXED_BUFSIZE=128 csdr simple_agc_cc 0.0001 2 | \
CSDR_FIXED_BUFSIZE=128 csdr bfsk_demod_cf $(csdr =2*85/1e3) 21 | \
CSDR_FIXED_BUFSIZE=256 csdr serial_line_decoder_f_u8 22 5 1 | \
CSDR_FIXED_BUFSIZE=1 csdr rtty_baudot2ascii_u8_u8

For both commands, first the audio data is acquired with arecord, then using the format

conversion, shift  and FIR decimation operations in CSDR, the result is the complex

baseband FSK signal.

5.6 FSK demodulation

Both commands use bandpass filters,  the center of which are the frequencies of the

space  and mark  tones.  A peak  filter  is  the  opposite  of  a  notch  filter,  passing  only

frequencies  in  the  immediate  surroundings  of  a  given  center  frequency.  With

peaks_fir_cc, a pair of peak filters are generated and their taps are added together. The

resulting  filter  passes  only  the  two  FSK tones.  Longer  filter  length  means  sharper

passband. The syntax of related commands is below:

csdr firdes_peak_c <rate> <length> [window [--octave]] 
csdr peaks_fir_cc <taps_length> [peak_rate × N] 
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The taps of a single peak filter are calculated as: 

h(t )=f window {e j2π f p t } (22)

In (22), f p  is the frequency of the peak, and f window  is the window function.
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Figure 52: Transfer characteristic of peak filter with 31 taps



See a sample peak filter transfer charactersitic on Figure 62, and Figure 53 for a GNU

Radio simulation of two peaks at equal distance from DC, where the filter is driven with

random input, so that the spectrum graph shows the approximate filter characteristic.

Now that we have our two tones selected with a bandpass filter, we need to know which

tone is  currently on.  The first  command reuses the FM demodulator  I  have already

written: fmdemod_quadri_cf. 

The other way to sepearate the two frequencies is to calculate the power of the signal at

the output of each bandpass filter, and subtract them from each other. We can decide

between mark and space by checking if the result is above or below zero, see Figure 54. 

The command csdr bfsk_demod_cf implements a similar data flow, but it does not make

the decision: its output is processed by the serial line decoder function instead. 

csdr bfsk_demod_cf <spacing> <filter_length> 
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Figure 53: Filter passing two peaks in GNU Radio testbench

Figure 54: Block diagram of FSK demodulator comparing the output of 
mark and space band-pass filters



5.7 Serial line decoder

After applying any of the frequency discrimination methods above, our signal will look

like as in Figure 55.

The next problem to solve is symbol timing synchronization. The interesting part is,

RTTY works very similar to UART, with the difference of having 5 data bits instead of

8. An UART line is high by default. The UART receiver starts when it captures the zero

crossing at the beginning of the start bit, thus synchronization happens at each character.

I implemented a generic algorithm for recovering data from a sampled serial line, thus it

is  not  limited  to  decoding  RTTY. The  number  of  data  bits  and  stop  bits  can  be

configured. It is possible to put an ADC on a serial line, record a block of samples and

then process them with this command. The syntax is as follows:

csdr serial_line_decoder_f_u8 <samples_per_bits> [databits [stopbits]]

It synchronizes on the first falling edge of the start bit, samples the given number of

data bits, and also checks the stop bit (see Figure 56).  

It averages several samples from the middle of the data bit in order to make the bit

decision. (Currently, the number of samples to average can be adjusted internally in the

code.)
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Figure 55: FSK signal after frequency detector stage



5.8 Baudot decoder

As the data returned from serial_line_decoder_f_u8 is still in Baudot code, we need to

turn it to ASCII, for which I have created a new function:

csdr rtty_baudot2ascii_u8_u8 

See Table 6 for reference. As demonstrated on Figure 57, CSDR can be used to decode 

real-world RTTY transmissions.
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Figure 56: Internal operation of serial line decoder



5.9 Demodulating M-FSK 

CSDR  contains  commands  that  are  tailored  for  decoding  multiple  frequency-shift

keying. The generic slicer is to be used after the FM demodulator. It allows you to map

the frequency values to N distinct symbols:

csdr generic_slicer_f_u8 <n_symbols>

For example, if n_symbols is set to 3, it will output 0x00 for values in the (−∞;0.5)

range, 0x01 for values in the range [−0.5,0.5 )  and 0x02 for values in [0.5,∞ ) . 

A demonstration of 4-FSK demodulation has been included in CSDR, which can be

started by loading  grc_tests/test_m_fsk.grc into GNU Radio Companion. The 4-FSK

signal  is  generated  by  GNU Radio  (see  Figure  58),  and  the  symbols  are  correctly

decoded by CSDR and written into a temporary file. 
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Figure 57: RTTY decoding with CSDR



5.10 Demodulating FSK signals transmitted using the CC1111 
wireless MCU

When I came up with the idea of CSDR, I imagined it as an universal command line

tool that can perform simple digital signal processing tasks for Software Defined Radio.

The purpose of this  section is  to  show that with its  recently introduced support  for

digital modes, it is possible to use it for decoding signals of wireless devices that use

simple modulation schemes. 

This  is  important  because  today  IoT  is  a  growing  market,  and  many  IoT  devices

communicate wireless, mostly using WiFi, Bluetooth or the mobile network to connect

to  the  Internet.  However,  some  devices  communicate  on  the  ISM  bands  with  no
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Figure 58: 4-FSK signal generated by GNU Radio is used as the input for the
demodulator built with CSDR



encryption, and many IoT vendors have low security standards (not limited to wireless

communication, but for the whole system), so new vulnerabilities are found regularly by

researchers. 

Reverse engineering of wireless protocols often starts with using an SDR receiver to

record some packets sent by the target, and then analyzing the baseband I/Q signal. For

the latter, the work the received signal is often obtained at a considerably good SNR,

and the task is to build a working demodulator as soon as possible, rather than building

a receiver  that works well  even under bad conditions.  For example,  fine tuning the

parameters of the Costas loop for maximum performance are less important than having

the decoded data at hand in this application. 

As CSDR can be used as a digital modem, it could generate a modulated signal from

crafted packets, and also for demodulation during interception. In the following part, an

example follows to demonstrate that FSK transmissions sent by the popular sub-GHz

wireless MCU, Texas Instruments CC1111 can be decoded with CSDR.  

The  YARD  Stick  One,  produced  by  Great  Scott  Gadgets,  can  be  considered  as  a

development board for the CC1111. With the open source RfCat firmware installed, the

RF SoC on the panel can fully be controlled over USB: setting receiver and transmitter

parameters, sending and receiving data can be carried out from a convenient IPython

shell on the host PC. While the YARD Stick One is a special development tool, many

commercial devices use the same chip, or use similar simple FSK modulation. 

I started by setting up the YARD Stick One to send a known message. 

$ rfcat -r #open the rfcat IPython shell

#set frequency and data rate:
d.setFreq(433000000) 
d.setMdmDRate(1000) 

#check radio parameters, make a note of the sync word:
print d.reprRadioConfig() 

#transmit 100 packets:
for i in range(0,100): d.RFxmit('test') 

The radio is set up to transmit the message "test" at 1000 symbol/second, at 433 MHz.

While transmitting, I used an RTL-SDR to receive the signal. 

68



rtl_sdr -f 433000000 rfcat.cu8

Note that you need to choose a frequency where you are legally allowed to transmit, or

you need to use a direct cable connection via an attenuator between the YARD Stick and

the SDR receiver.

In case of a completely unknown signal,  the work would continue by analyzing the

signal to determine the modulation, estimating the symbol rate, etc. This could be done

in GNU Radio or other tools, including the one shown in Figure 59, called Inspectrum. 

Inspectrum  shows  us  the  spectrogram  of  recorded  I/Q  files,  and  it  allows  us  to

demodulate FSK manually by visually selecting the center frequency, the bandwidth and

the bit duration. I found the feature to put a grid on a packet to allow manual timing

recovery very intuitive, see Figure 60. 
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Figure 59: Analyzing recorded I/Q signal with Inspectrum



I have exported the demodulated bits to the standard output, and broken the packet into

different parts:

1, 0, 1, 0, 1, 0, 1, 0, --- preamble
1, 0, 1, 0, 1, 0, 1, 0, 
1, 0, 1, 0, 1, 0, 1, 0, 
1, 0, 1, 0, 1, 0, 1, 0,

0, 0, 0, 0, 1, 1, 0, 0, --- sync word: 0x0C4E
0, 1, 0, 0, 1, 1, 1, 0, 

0, 1, 1, 1, 0, 1, 0, 0, --- 't'
0, 1, 1, 0, 0, 1, 0, 1, --- 'e'
0, 1, 1, 1, 0, 0, 1, 1, --- 's'
0, 1, 1, 1, 0, 1, 0, 0  --- 't'

By looking at the datasheet of the CC1111 [10], one can easily find that the messages

follow the structure above. I have also verified that the transmitted sync word matches

the one in RfCat settings. 

Manual tools like Inspectrum are not convenient if one wants to decode a high amount

of packets. On that reason, I built an FSK demodulator using CSDR, similar to the one

for RTTY in section 5.5. While tuning the parameters of the timing recovery algorithm,

70

Figure 60: Grid for manual timing recovery in Inspectrum, with the derived FSK
demodulated signal on the bottom subpane



I used its feature to plot the internal state with GNU Octave into PNG files, so that I

could make sure that each symbol is sampled at the correct phase (see Figure 61). I have

observed that the Gardner algorithm successfully locked on the signal while receiving

the preamble.

One of the advantages of CSDR is that there is an easy way to see if the timing recovery

block managed to sample at the maximum eye opening. This is hard to do with a GNU

Radio flowgraph, as one has to manually, visually compare the results with the original

baseband signal in time domain. 

The following command demodulates the recorded signal, finds the preamble and the

synchronization word, and prints the bits of the packet following them: 

cat rfcat.cu8 | csdr convert_u8_f | \
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Figure 61: Gardner algorithm locking on the FSK signal 
sent by the CC1111 on the YARD Stick One



csdr fir_decimate_cc 10 $(csdr =50000./24e5) | \
csdr shift_addition_cc $(csdr =42000/240000.) | \
csdr fmdemod_quadri_cf | csdr gain_ff 4 | csdr dsb_fc | \
csdr bandpass_fir_fft_cc -0.0001 0.0001 0.03 | \
csdr timing_recovery_cc GARDNER 204 0.5 2 --add_q | \
csdr realpart_cf | csdr binary_slicer_f_u8 | \
csdr pattern_search_u8_u8 32 0 1 0 1 0 1 0 1 \
  0, 0, 0, 0, 1, 1, 0, 0,  0, 1, 0, 0, 1, 1, 1, 0, | xxd -g 1 

In the output of the command one can inspect the bits of the first two packets:

00000000: 00 01 01 01 00 01 00 00 00 01 01 00 00 01 00 01  ................ 
00000010: 00 01 01 01 00 00 01 01 00 01 01 01 00 01 00 00  ................
00000020: 00 01 01 01 00 01 00 00 00 01 01 00 00 01 00 01  ................ 
00000030: 00 01 01 01 00 00 01 01 00 01 01 01 00 01 00 00  ................ 
(...)

Next I put together a command that receives the wireless transmissions of the CC1111

with the RTL-SDR, demodulates them and decodes the 4-byte test messages in real-

time:

rtl_sdr -f433000000 -s2400000 - | \
csdr convert_u8_f | \
csdr fir_decimate_cc 10 $(csdr =50000./24e5) | \
csdr shift_addition_cc $(csdr =35000/240000.) |  \
csdr fmdemod_quadri_cf | csdr gain_ff 4 | csdr dsb_fc | \
csdr bandpass_fir_fft_cc -0.0001 0.0001 0.03 | \
csdr timing_recovery_cc GARDNER 240 0.5 2 --add_q | \
csdr realpart_cf | csdr binary_slicer_f_u8 | 
csdr pattern_search_u8_u8 32 1 0 1 0 1 0 1 \
     0  0, 0, 0, 0, 1, 1, 0, 0,  0, 1, 0, 0, 1, 1, 1, 0, | \
     csdr pack_bits_8to1_u8_u8 

Figure 62 shows this command in action. 
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5.11 Generating additive white Gaussian noise

Wireless channels are often modeled as channels with additive white Gaussian noise

(AWGN) present. The awgn_cc function in CSDR does the same:

csdr awgn_cc <snr_db> [--awgnfile /path/to/file] [--snrshow]

It adds white Gaussian noise to the signal to achieve a given SNR, assuming that the

signal is clean and its power level is 0 dB. It can also measure the real SNR if the

--snrshow switch is on, so that the  snr_db parameter can be adjusted. The measured

SNR is printed on the standard error pipe. 

While getting a block of uniform white noise is easy on a Linux system (basically,

73

Figure 62: CSDR decoding 4 byte packets 
containing the string "test", sent from CC1111



/dev/urandom generates uniform noise), some additional calculations are needed to get

Gaussian white  noise.  While  both types  of noise have the same flat  spectrum, their

amplitude distribution is different, which can be observed on their histograms.

The  Box-Muller  transform  (23)  allows  us  to  transform  two  uniformly  distributed

random  variables,  U 0  and  U 1  into  two  random  variables  with  standard  normal

distribution, Z0  and Z1 .

Z0=R cos(Θ)=√−2 lnU 0 cos(2πU 1)

Z1=R sin(Θ)=√−2 lnU 0sin (2πU 1)
(23)

Based on this formula, the method to generate 32-bit complex valued Gaussian white

noise is as follows:

1. Read 8 bytes from /dev/urandom, as 32 bit integers (int). 

2. Cast them into 32-bit float and divide them by INT_MAX.

3. These numbers will be the current value of  U 0  and  U 1 .  Apply the formula

above to get Z0  and Z1 . 

4. Use the resulting values for Z0  and Z1  as the real and the imaginary part of the

output random number.

There are also CSDR functions to generate noise in itself:

csdr uniform_noise_f 
csdr gaussian_noise_c 

As a note, generating noise based on /dev/urandom can be slow in some applications. I

measured  a  10  Mbyte/s  maximum  reading  speed.  On  this  reason,  a  custom

pseudorandom number generator (PRNG) could be used, but the easiest way to speed up

this  processing  function  was  to  pre-generate  Gaussian  noise  using  csdr

gaussian_noise_cc into a file, and pass that to csdr awgn_cc.  This is what the optional

--awgnfile parameter can be used for. 

The csdr awgn_cc function has been used to create noisy conditions while testing the

my  demodulators  against  Fldigi,  and  also  for  generating  the  variance  diagrams  in

section 4.5.
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5.12 Functions helping development

At  the  time  of  writing,  the  CSDR  command-line  tool  had  103  functions.  While

executing "csdr --help" gives a list of these functions, I have realized the need of easy

searching within the functions for their syntax, thus the "?<keyword>" search function

has been introduced. As an example, see the new command and its result below.

$ csdr ?psk   
csdr ?: csdr 2>&1 | grep psk 
    psk31_varicode_encoder_u8_u8 
    psk31_varicode_decoder_u8_u8 
    psk_modulator_u8_c <n_psk> 
    psk31_interpolate_sine_cc <interpolation> 
    bpsk_costas_loop_cc <loop_bandwidth> <damping_factor> <gain> (...)

The command above filters the help for CSDR commands containing "psk".

Another new function,  "??<keyword >" opens the browser and jumps straight to the

given function in the CSDR documentation on GitHub. 

I  have  also  repeatedly  faced  that  some  CSDR  functions  take  parameters  that  are

convenient to be calculated using a formula. See the beginning of the CSDR command

for a simple NFM demodulator: 

rtl_sdr -s 2400000 -f 145000000 -g 20 - | \
csdr convert_u8_f | \
csdr shift_addition_cc \
    `python -c "print float(145000000-145350000)/2400000"` | \
csdr fir_decimate_cc 50 0.005 HAMMING | \
csdr fmdemod_quadri_cf | \
(...)

In this example, the rate parameter of csdr shift_addition_cc is calculated using Python.

(Similarly,  in  GNU  Radio  Companion,  one  can  give  mathematical  expressions  to

parameters  of  blocks,  and  these  are  evaluated  as  Python expressions.)  It  looked

convenient to create an easy to remember shorthand for calculations like that, resulting

in the "=<expression>" CSDR function. A simple example is shown below:

$ csdr =3+4*5+pi
26.1415926536 

$ csdr '=(3+4)*5+pi' 
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38.1415926536 

This method also uses Python for evaluating expressions. If there are parentheses in the

expression, it  is advised to put it  in quotes,  as the shell  would attempt to parse the

parentheses. Now the same beginning part of the NFM demodulator looks as below:

rtl_sdr -s 2400000 -f 145000000 -g 20 - | \
csdr convert_u8_f | \
csdr shift_addition_cc $(csdr '=float(145000000-145350000)/2400000')|\
csdr fir_decimate_cc 50 0.005 HAMMING | \
csdr fmdemod_quadri_cf | \
(...)
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6 Conclusion

The main objective of this thesis has been studying various methods and algorithms

used in digital modems. The topics I was most interested in were carrier and symbol

timing recovery algorithms, as these are essential for building demodulators. I really

enjoyed implementing functional parts of BPSK and FSK demodulators, and putting

them together into working demodulator DSP chains. 

In the future I am planning to add the RTTY receiver to the web UI, and I am also

interested in improving the performance of the BPSK31 demodulator.
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